List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6334287/publications.pdf Version: 2024-02-01

		9234	10127
351	24,065	74	140
papers	citations	h-index	g-index
374	374	374	20764
all docs	docs citations	times ranked	citing authors

Пенли М/п

#	Article	IF	CITATIONS
1	Graphenes as Potential Material for Electronics. Chemical Reviews, 2007, 107, 718-747.	23.0	2,480
2	Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 2010, 22, 1392-1401.	3.2	2,060
3	Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chemical Society Reviews, 2012, 41, 7857.	18.7	590
4	Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Organic and Biomolecular Chemistry, 2014, 12, 3774.	1.5	570
5	Pro-aromatic and anti-aromatic ï€-conjugated molecules: an irresistible wish to be diradicals. Chemical Society Reviews, 2015, 44, 6578-6596.	18.7	522
6	Zethrenes, Extended <i>p</i> -Quinodimethanes, and Periacenes with a Singlet Biradical Ground State. Accounts of Chemical Research, 2014, 47, 2582-2591.	7.6	376
7	Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. Journal of Hazardous Materials, 2010, 182, 162-168.	6.5	295
8	<i>N</i> -Annulated Perylene as An Efficient Electron Donor for Porphyrin-Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2014, 136, 265-272.	6.6	283
9	From graphite molecules to columnar superstructures – an exercise in nanoscience. Journal of Materials Chemistry, 2004, 14, 494-504.	6.7	281
10	Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon, 2011, 49, 1787-1796.	5.4	275
11	Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. Journal of Materials Chemistry, 2006, 16, 96-100.	6.7	269
12	Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 7302.	6.7	262
13	Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State?. Journal of the American Chemical Society, 2012, 134, 14913-14922.	6.6	256
14	Nanostructured MnO ₂ /graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. Journal of Materials Chemistry, 2012, 22, 1845-1851.	6.7	252
15	Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. Journal of Materials Chemistry, 2012, 22, 80-85.	6.7	236
16	Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9, 2335.	5.8	230
17	Stable Tetrabenzo-Chichibabin's Hydrocarbons: Tunable Ground State and Unusual Transition between Their Closed-Shell and Open-Shell Resonance Forms. Journal of the American Chemical Society, 2012, 134, 14513-14525.	6.6	218
18	From open-shell singlet diradicaloids to polyradicaloids. Chemical Communications, 2018, 54, 2186-2199.	2.2	213

#	Article	IF	CITATIONS
19	Hexakis(4-iodophenyl)-peri-hexabenzocoronene- A Versatile Building Block for Highly Ordered Discotic Liquid Crystalline Materials. Journal of the American Chemical Society, 2004, 126, 177-186.	6.6	202
20	An Acid–Base ontrollable [c2]Daisy Chain. Angewandte Chemie - International Edition, 2008, 47, 7470-7474.	7.2	201
21	High Anisotropy of the Field-Effect Transistor Mobility in Magnetically Aligned Discotic Liquid-Crystalline Semiconductors. Journal of the American Chemical Society, 2005, 127, 16233-16237.	6.6	197
22	Acidâ^Base Actuation of [<i>c</i> 2]Daisy Chains. Journal of the American Chemical Society, 2009, 131, 7126-7134.	6.6	195
23	Tuneable Singlet Exciton Fission and Triplet–Triplet Annihilation in an Orthogonal Pentacene Dimer. Advanced Functional Materials, 2015, 25, 5452-5461.	7.8	184
24	Pushing Extended <i>p</i> -Quinodimethanes to the Limit: Stable Tetracyano-oligo(<i>N</i> -annulated) Tj ETQq0 (2013, 135, 6363-6371.	0 0 rgBT / 6.6	Overlock 10 170
25	Dibenzoheptazethrene Isomers with Different Biradical Characters: An Exercise of Clar's Aromatic Sextet Rule in Singlet Biradicaloids. Journal of the American Chemical Society, 2013, 135, 18229-18236.	6.6	167
26	Soluble and Stable Heptazethrenebis(dicarboximide) with a Singlet Open-Shell Ground State. Journal of the American Chemical Society, 2011, 133, 11896-11899.	6.6	162
27	Controlled Self-Assembly of Hexa-peri-hexabenzocoronenes in Solution. Journal of the American Chemical Society, 2004, 126, 11311-11321.	6.6	161
28	Atomically precise bottom-up synthesis of π-extended [5]triangulene. Science Advances, 2019, 5, eaav7717.	4.7	159
29	Open-shell polycyclic aromatic hydrocarbons. Journal of Materials Chemistry, 2012, 22, 4151-4160.	6.7	157
30	Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering. Nature Communications, 2016, 7, 13622.	5.8	157
31	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8007-8011.	7.2	140
32	Global Aromaticity in Macrocyclic Polyradicaloids: Hückel's Rule or Baird's Rule?. Accounts of Chemical Research, 2019, 52, 2309-2321.	7.6	139
33	Open-Shell Graphene Fragments. CheM, 2021, 7, 358-386.	5.8	136
34	Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299, 132-140.	6.5	130
35	From Branched Polyphenylenes to Graphite Ribbons. Macromolecules, 2003, 36, 7082-7089.	2.2	126
36	Triangle-Shaped Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2007, 46, 3033-3036.	7.2	126

#	Article	IF	CITATIONS
37	Controlled Growth of Largeâ€Area Highâ€Performance Smallâ€Molecule Organic Singleâ€Crystalline Transistors by Slotâ€Die Coating Using A Mixed Solvent System. Advanced Materials, 2013, 25, 6442-6447.	11.1	123
38	Perylene-Fused BODIPY Dye with Near-IR Absorption/Emission and High Photostability. Organic Letters, 2011, 13, 632-635.	2.4	119
39	Higher Order π-Conjugated Polycyclic Hydrocarbons with Open-Shell Singlet Ground State: Nonazethrene versus Nonacene. Journal of the American Chemical Society, 2016, 138, 10323-10330.	6.6	118
40	Rylene Ribbons with Unusual Diradical Character. CheM, 2017, 2, 81-92.	5.8	116
41	Graphene and Graphene-like Molecules: Prospects in Solar Cells. Journal of the American Chemical Society, 2016, 138, 1095-1102.	6.6	115
42	Efficient production of [<i>n</i>]rotaxanes by using template-directed clipping reactions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17266-17271.	3.3	114
43	New Discotic Mesogens Based on Triphenylene-Fused Triazatruxenes: Synthesis, Physical Properties, and Self-Assembly. Chemistry of Materials, 2010, 22, 435-449.	3.2	113
44	Perylene Anhydride Fused Porphyrins as Near-Infrared Sensitizers for Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 3652-3655.	2.4	113
45	Carbonization of Disclike Molecules in Porous Alumina Membranes: Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angewandte Chemie - International Edition, 2005, 44, 2120-2123.	7.2	111
46	Macrocyclic Polyradicaloids with Unusual Super-ring Structure and Global Aromaticity. CheM, 2018, 4, 1586-1595.	5.8	110
47	Efficient Singlet Fission and Triplet-Pair Emission in a Family of Zethrene Diradicaloids. Journal of the American Chemical Society, 2017, 139, 18376-18385.	6.6	107
48	Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. Journal of the American Chemical Society, 2016, 138, 1065-1077.	6.6	103
49	Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr) composite for dye degradation with the assistance of UiO-66. RSC Advances, 2015, 5, 39592-39600.	1.7	102
50	On-surface synthesis of graphene nanostructures with π-magnetism. Chemical Society Reviews, 2021, 50, 3238-3262.	18.7	102
51	Engineering a FRET strategy to achieve a ratiometric two-photon fluorescence response with a large emission shift and its application to fluorescence imaging. Chemical Science, 2015, 6, 2360-2365.	3.7	101
52	3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. Nature Chemistry, 2020, 12, 242-248.	6.6	101
53	Hexa-peri-hexabenzocoronenes by Efficient Oxidative Cyclodehydrogenation:  The Role of the Oligophenylene Precursors. Organic Letters, 2006, 8, 1145-1148.	2.4	100
54	Benzenoid Polycyclic Hydrocarbons with an Open–Shell Biradical Ground State. Chemistry - an Asian Journal, 2013, 8, 2894-2904.	1.7	100

#	Article	IF	CITATIONS
55	A Diradical Approach towards BODIPYâ€Based Dyes with Intense Nearâ€Infrared Absorption around <i>λ</i> =1100â€nm. Angewandte Chemie - International Edition, 2016, 55, 2815-2819.	7.2	100
56	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	11.1	96
57	Tetracyanoquaterrylene and Tetracyanohexarylenequinodimethanes with Tunable Ground States and Strong Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2013, 52, 8561-8565.	7.2	94
58	From Branched Hydrocarbon Propellers toC3-Symmetric Graphite Disks. Journal of Organic Chemistry, 2004, 69, 5179-5186.	1.7	93
59	Push–Pull Type Oligo(<i>N</i> -annulated perylene)quinodimethanes: Chain Length and Solvent-Dependent Ground States and Physical Properties. Journal of the American Chemical Society, 2015, 137, 8572-8583.	6.6	93
60	Structural Evolution of Hexa-peri-hexabenzocoronene Adlayers in Heteroepitaxy onn-Pentacontane Template Monolayers. Journal of the American Chemical Society, 2005, 127, 16245-16250.	6.6	92
61	Stepwise Cyanation of Naphthalene Diimide for n-Channel Field-Effect Transistors. Organic Letters, 2012, 14, 2964-2967.	2.4	92
62	Benzene-fused BODIPYs: synthesis and the impact of fusion mode. Chemical Communications, 2013, 49, 1217.	2.2	92
63	A Periâ€ŧetracene Diradicaloid: Synthesis and Properties. Angewandte Chemie - International Edition, 2018, 57, 9697-9701.	7.2	92
64	<i>N</i> -Annulated Perylene Fused Porphyrins with Enhanced Near-IR Absorption and Emission. Organic Letters, 2010, 12, 4046-4049.	2.4	91
65	BODIPYâ€Fused Porphyrins as Soluble and Stable Nearâ€IR Dyes. Chemistry - A European Journal, 2011, 17, 6610-6614.	1.7	91
66	Synthesis, Self-Assembly, and Charge Transporting Property of Contorted Tetrabenzocoronenes. Journal of Organic Chemistry, 2010, 75, 8069-8077.	1.7	88
67	Pyrolyzed graphene oxide/resorcinol-formaldehyde resin composites as high-performance supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 2663.	6.7	87
68	Anthracene-Fused BODIPYs as Near-Infrared Dyes with High Photostability. Organic Letters, 2011, 13, 6026-6029.	2.4	85
69	Solid-State Pyrolyses of Metal Phthalocyanines: A Simple Approach towards Nitrogen-Doped CNTs and Metal/Carbon Nanocables. Small, 2005, 1, 798-801.	5.2	84
70	Nanotubes Fabricated from Niâ~'Naphthalocyanine by a Template Method. Journal of the American Chemical Society, 2005, 127, 12792-12793.	6.6	81
71	Switching between Coherent and Incoherent Singlet Fission via Solvent-Induced Symmetry Breaking. Journal of the American Chemical Society, 2019, 141, 17558-17570.	6.6	81
72	Arylamine-Substituted Hexa-peri-hexabenzocoronenes: Facile Synthesis and Their Potential Applications as"Coaxial―Hole-Transport Materials. Angewandte Chemie - International Edition, 2004, 43, 5331-5335.	7.2	80

#	Article	IF	CITATIONS
73	Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. Science Advances, 2019, 5, eaaw2347.	4.7	80
74	Superâ€heptazethrene. Angewandte Chemie - International Edition, 2016, 55, 8615-8619.	7.2	79
75	Reinforced Selfâ€Assembly of Hexaâ€ <i>peri</i> â€hexabenzocoronenes by Hydrogen Bonds: From Microscopic Aggregates to Macroscopic Fluorescent Organogels. Chemistry - A European Journal, 2008, 14, 240-249.	1.7	78
76	B–N–B Bond Embedded Phenalenyl and Its Anions. Journal of the American Chemical Society, 2017, 139, 15760-15767.	6.6	78
77	Influence of molecular conformation on organic/metal interface energetics. Chemical Physics Letters, 2005, 413, 390-395.	1.2	72
78	<i>meso</i> -Substituted Bisanthenes as Soluble and Stable Near-infrared Dyes. Journal of Organic Chemistry, 2010, 75, 856-863.	1.7	72
79	Cyanated Diazatetracene Diimides with Ultrahigh Electron Affinity for <i>n</i> -Channel Field Effect Transistors. Organic Letters, 2013, 15, 1194-1197.	2.4	72
80	Bismuth tungstate incorporated zirconium metal–organic framework composite with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4, 64977-64984.	1.7	72
81	Grapheneâ€like Molecules with Four Zigzag Edges. Angewandte Chemie - International Edition, 2018, 57, 6541-6545.	7.2	72
82	Bis-N-annulated Quaterrylenebis(dicarboximide) as a New Soluble and Stable Near-Infrared Dye. Organic Letters, 2009, 11, 4508-4511.	2.4	71
83	Soluble and Stable Zethrenebis(dicarboximide) and Its Quinone. Organic Letters, 2010, 12, 4690-4693.	2.4	71
84	Bisanthracene Bis(dicarboxylic imide)s as Soluble and Stable NIR Dyes. Chemistry - A European Journal, 2009, 15, 9299-9302.	1.7	70
85	Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-radical Characters. Journal of the American Chemical Society, 2016, 138, 7782-7790.	6.6	70
86	A kinetically blocked 1,14:11,12-dibenzopentacene: a persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon. Chemical Science, 2014, 5, 1908.	3.7	69
87	The Versatile Synthesis and Self-Assembly of Star-Type Hexabenzocoronenes. Angewandte Chemie - International Edition, 2003, 42, 5329-5333.	7.2	68
88	Room-Temperature Magnets Based on 1,3,5-Triazine-Linked Porous Organic Radical Frameworks. CheM, 2019, 5, 1223-1234.	5.8	67
89	Oligomers of Hexa-peri-hexabenzocoronenes as "Super-oligophenylenesâ€ ı Synthesis, Electronic Properties, and Self-assembly. Journal of Organic Chemistry, 2004, 69, 8194-8204.	1.7	65
90	Electron-Deficient Triphenylene and Trinaphthylene Carboximides. Organic Letters, 2009, 11, 3028-3031.	2.4	65

#	Article	IF	CITATIONS
91	Superoctazethrene: An Open-Shell Graphene-like Molecule Possessing Large Diradical Character but Still with Reasonable Stability. Journal of the American Chemical Society, 2018, 140, 14054-14058.	6.6	65
92	Solution processed F doped ZnO (ZnO:F) for thin film transistors and improved stability through co-doping with alkali metals. Journal of Materials Chemistry C, 2015, 3, 1787-1793.	2.7	64
93	Fluorenyl Based Macrocyclic Polyradicaloids. Journal of the American Chemical Society, 2017, 139, 13173-13183.	6.6	64
94	A Cruciform 6,6′â€Dipentacenyl: Synthesis, Solidâ€State Packing and Applications in Thinâ€Film Transistors. Chemistry - A European Journal, 2010, 16, 464-468.	1.7	63
95	Solution-Processed LiF-Doped ZnO Films for High Performance Low Temperature Field Effect Transistors and Inverted Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 6687-6693.	4.0	63
96	Stable Olympicenyl Radicals and Their π-Dimers. Journal of the American Chemical Society, 2020, 142, 11022-11031.	6.6	63
97	New carbon-rich materials for electronics, lithium battery, and hydrogen storage applications. Chemical Communications, 2005, , 2197.	2.2	59
98	Solution-processed nanographene distributed feedback lasers. Nature Communications, 2019, 10, 3327.	5.8	59
99	On-Surface Synthesis and Characterization of [7]Triangulene Quantum Ring. Nano Letters, 2021, 21, 861-867.	4.5	59
100	Modern zethrene chemistry. Canadian Journal of Chemistry, 2017, 95, 223-233.	0.6	58
101	Bowl-Shaped Carbon Nanobelts Showing Size-Dependent Properties and Selective Encapsulation of C ₇₀ . Journal of the American Chemical Society, 2019, 141, 5934-5941.	6.6	58
102	Lateral Extension of π Conjugation along the Bay Regions of Bisanthene through a Diels–Alder Cycloaddition Reaction. Chemistry - A European Journal, 2011, 17, 14672-14680.	1.7	57
103	Synthesis and Characterization of Oxygen-Embedded Quinoidal Pentacene and Nonacene. Journal of the American Chemical Society, 2019, 141, 2169-2176.	6.6	57
104	Solid-State Synthesis of "Bamboo-Like―and Straight Carbon Nanotubes by Thermolysis of Hexa-peri-hexabenzocoronene–Cobalt Complexes. Small, 2005, 1, 210-212.	5.2	56
105	A Soluble and Stable Quinoidal Bisanthene with NIR Absorption and Amphoteric Redox Behavior. Organic Letters, 2009, 11, 4854-4857.	2.4	56
106	Fused Bispentacenequinone and Its Unexpected Michael Addition. Organic Letters, 2010, 12, 3946-3949.	2.4	56
107	<i>meso</i> â€Ester and Carboxylic Acid Substituted BODIPYs with Farâ€Red and Nearâ€Infrared Emission for Bioimaging Applications. Chemistry - A European Journal, 2014, 20, 2301-2310.	1.7	55
108	Synthesis and Chiral Resolution of Twisted Carbon Nanobelts. Journal of the American Chemical Society, 2021, 143, 15924-15929.	6.6	55

#	Article	IF	CITATIONS
109	Disc-like 7, 14-dicyano-ovalene-3,4:10,11-bis(dicarboximide) as a solution-processible n-type semiconductor for air stable field-effect transistors. Chemical Science, 2012, 3, 846-850.	3.7	54
110	Global Aromaticity in Macrocyclic Cyclopentaâ€Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. Angewandte Chemie - International Edition, 2018, 57, 13052-13056.	7.2	54
111	A molecular movie of ultrafast singlet fission. Nature Communications, 2019, 10, 4207.	5.8	54
112	Triphenylethylenyl-based donor–acceptor–donor molecules: studies on structural and optical properties and AIE properties for cyanide detection. Journal of Materials Chemistry C, 2017, 5, 12194-12203.	2.7	53
113	A Threeâ€Dimensionally Ï€â€Conjugated Diradical Molecular Cage. Angewandte Chemie - International Edition, 2017, 56, 15383-15387.	7.2	52
114	A water-soluble hexa-peri-hexabenzocoronene: synthesis, self-assembly and role as template for porous silica with aligned nanochannels. Chemical Communications, 2006, , 48-50.	2.2	51
115	Enhanced Photocatalytic Activity of the AgI/UiOâ€66(Zr) Composite for Rhodamineâ€B Degradation under Visibleâ€Light Irradiation. ChemPlusChem, 2015, 80, 1321-1328.	1.3	51
116	Naphthalene-fused BODIPY near-infrared dye as a stable contrast agent for in vivo photoacoustic imaging. Chemical Communications, 2016, 52, 11504-11507.	2.2	51
117	Combining one-, two- and three-dimensional polyphenylene nanostructures. Journal of Materials Chemistry, 2005, 15, 41-52.	6.7	50
118	Formation of [2]rotaxanes by encircling [20], [21] and [22]crown ethers onto the dibenzylammonium dumbbell. Chemical Science, 2012, 3, 425-432.	3.7	50
119	Phenalenyl-fused porphyrins with different ground states. Chemical Science, 2015, 6, 2427-2433.	3.7	50
120	Synthesis of [n]Rotaxanes by Template-Directed Clipping: The Role of the Dialkylammonium Recognition Sites. Organic Letters, 2010, 12, 1712-1715.	2.4	49
121	A work-function tunable polyelectrolyte complex (PEI:PSS) as a cathode interfacial layer for inverted organic solar cells. Journal of Materials Chemistry A, 2014, 2, 7788-7794.	5.2	49
122	From All-Triazine C ₃ N ₃ Framework to Nitrogen-Doped Carbon Nanotubes: Efficient and Durable Trifunctional Electrocatalysts. ACS Applied Nano Materials, 2019, 2, 7969-7977.	2.4	49
123	Self-assembly of amphiphilic imidazolium-based hexa-peri-hexabenzo-coronenes into fibreous aggregates. Chemical Communications, 2007, , 2384-2386.	2.2	48
124	Turning on the biradical state of tetracyano-perylene and quaterrylenequinodimethanes by incorporation of additional thiophene rings. Chemical Science, 2014, 5, 3072-3080.	3.7	48
125	Partially stripped insulated nanowires: a lightly substituted hexa-peri-hexabenzocoronene-based columnar liquid crystal. Chemical Communications, 2004, , 336-337.	2.2	47
126	Hole mobility of 3.56 cm ² V ^{â^'1} s ^{â^'1} accomplished using more extended dithienothiophene with furan flanked diketopyrrolopyrrole polymer. Journal of Materials Chemistry C, 2015, 3, 9299-9305.	2.7	47

#	Article	IF	CITATIONS
127	<i>para</i> â€Quinodimethaneâ€Bridged Perylene Dimers and Pericondensed Quaterrylenes: The Effect of the Fusion Mode on the Ground States and Physical Properties. Chemistry - A European Journal, 2014, 20, 11410-11420.	1.7	46
128	N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 8428-8434.	5.2	46
129	Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers. RSC Advances, 2014, 4, 6646.	1.7	45
130	Elimination of Burn-in Open-Circuit Voltage Degradation by ZnO Surface Modification in Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 1608-1615.	4.0	45
131	Low temperature aqueous solution-processed Li doped ZnO buffer layers for high performance inverted organic solar cells. Journal of Materials Chemistry C, 2016, 4, 6169-6175.	2.7	45
132	Dicyclopenta[4,3,2,1- <i>ghi</i> :4′,3′,2′,1′- <i>pqr</i>]perylene: A Bowl-Shaped Fragment of Fullerene C ₇₀ with Global Antiaromaticity. Journal of the American Chemical Society, 2019, 141, 7266-7270.	6.6	45
133	Doubly and Triply Linked Porphyrinâ^'Perylene Monoimides as Near IR Dyes with Large Dipole Moments and High Photostability. Journal of Organic Chemistry, 2011, 76, 661-664.	1.7	44
134	Stable 3,6-Linked Fluorenyl Radical Oligomers with Intramolecular Antiferromagnetic Coupling and Polyradical Characters. Journal of the American Chemical Society, 2016, 138, 13048-13058.	6.6	44
135	Efficient synthesis of a hetero[4]rotaxane by a "threading-stoppering-followed-by-clipping―approach. Organic and Biomolecular Chemistry, 2010, 8, 2594.	1.5	43
136	<i>N</i> -Annulated Perylene-Based Push–Pull-Type Sensitizers. Organic Letters, 2015, 17, 724-727.	2.4	43
137	Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure. Journal of Organic Chemistry, 2016, 81, 2911-2919.	1.7	43
138	Solution-processed high performance organic thin film transistors enabled by roll-to-roll slot die coating technique. Organic Electronics, 2018, 54, 80-88.	1.4	43
139	Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Science Advances, 2021, 7, .	4.7	43
140	Isomeric Dibenzoheptazethrenes for Airâ€5table Organic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 16230-16236.	7.2	42
141	Towards <i>meso</i> â€Ester BODIPYs with Aggregationâ€Induced Emission Properties: The Effect of Substitution Positions. Chemistry - an Asian Journal, 2015, 10, 1631-1634.	1.7	41
142	[6]Cyclo- <i>para</i> -phenylmethine: An Analog of Benzene Showing Global Aromaticity and Open-Shell Diradical Character. Journal of the American Chemical Society, 2019, 141, 16266-16270.	6.6	41
143	Scholl Reaction of Peryleneâ€Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon?. Angewandte Chemie - International Edition, 2021, 60, 17654-17663.	7.2	41
144	A Periâ€ŧetracene Diradicaloid: Synthesis and Properties. Angewandte Chemie, 2018, 130, 9845-9849.	1.6	40

#	Article	IF	CITATIONS
145	A Chichibabin's Hydrocarbon-Based Molecular Cage: The Impact of Structural Rigidity on Dynamics, Stability, and Electronic Properties. Journal of the American Chemical Society, 2020, 142, 12730-12742.	6.6	40
146	Polycyclic Aromatic Compounds for Organic Field-effect Transistors:Molecular Design and Syntheses. Current Organic Chemistry, 2007, 11, 1220-1240.	0.9	39
147	Construction of Hetero[<i>n</i>]rotaxanes by Use of Polyfunctional Rotaxane Frameworks. Journal of Organic Chemistry, 2013, 78, 11560-11570.	1.7	39
148	Indolo[2,3-b]carbazoles with tunable ground states: how Clar's aromatic sextet determines the singlet biradical character. Chemical Science, 2014, 5, 4944-4952.	3.7	39
149	A <i>p</i> â€Quinodimethaneâ€Bridged Porphyrin Dimer. Chemistry - A European Journal, 2013, 19, 16814-16824.	1.7	38
150	Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks. Nature Communications, 2018, 9, 4871.	5.8	38
151	Facile Synthesis of Nitrogen-Doped [(6.) _{<i>m</i>} 8] _{<i>n</i>} Cyclacene Carbon Nanobelts by a One-Pot Self-Condensation Reaction. Journal of the American Chemical Society, 2021, 143, 2716-2721.	6.6	38
152	Tetrakis(4-tert-butylphenyl) substituted and fused quinoidal porphyrins. Chemical Communications, 2012, 48, 7684.	2.2	37
153	Conjugated polyfluorene imidazolium ionic liquids intercalated reduced graphene oxide for high performance supercapacitor electrodes. Nano Energy, 2014, 6, 119-128.	8.2	37
154	Conformationally Flexible Bis(9â€fluorenylidene)porphyrin Diradicaloids. Angewandte Chemie - International Edition, 2017, 56, 13484-13488.	7.2	37
155	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie - International Edition, 2019, 58, 18591-18597.	7.2	37
156	After 60 Years of Efforts: The Chemical Synthesis of a Carbon Nanobelt. CheM, 2017, 2, 619-620.	5.8	36
157	Functionalized Coronenes: Synthesis, Solid Structure, and Properties. Journal of Organic Chemistry, 2012, 77, 11319-11324.	1.7	35
158	Cetyltrimethylammonium bromide intercalated graphene/polypyrrole nanowire composites for high performance supercapacitor electrode. RSC Advances, 2012, 2, 10610.	1.7	35
159	Enhanced Polymer Thin Film Transistor Performance by Carefully Controlling the Solution Selfâ€Assembly and Film Alignment with Slot Die Coating. Advanced Electronic Materials, 2015, 1, 1500036.	2.6	35
160	Grapheneâ€like Molecules with Four Zigzag Edges. Angewandte Chemie, 2018, 130, 6651-6655.	1.6	35
161	Overcrowded Ethylene-Bridged Nanohoop Dimers: Regioselective Synthesis, Multiconfigurational Electronic States, and Global Hückel/Möbius Aromaticity. Journal of the American Chemical Society, 2021, 143, 20419-20430.	6.6	35
162	Solvent Molecules in an Epitaxially Grown Scaffold of Star-Shaped Nanographenes. Journal of the American Chemical Society, 2005, 127, 14580-14581.	6.6	34

#	Article	IF	CITATIONS
163	7,14-Diaryl-Substituted Zethrene Diimides as Stable Far-Red Dyes with Tunable Photophysical Properties. Journal of Organic Chemistry, 2013, 78, 9032-9040.	1.7	34
164	Toward Singlet–Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement. Organic Letters, 2015, 17, 5854-5857.	2.4	34
165	Stable Oxindolylâ€Based Analogues of Chichibabin's and Müller's Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 14154-14158.	7.2	34
166	<i>peri</i> -Acenoacenes. Chemical Communications, 2019, 55, 5567-5570.	2.2	34
167	Star-Shaped Hexa-peri-hexabenzocoronene "Heptamerâ€i  Synthesis and Self-Assembly. Organic Letters, 2005, 7, 5761-5764.	2.4	33
168	Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction. Organic Letters, 2015, 17, 4168-4171.	2.4	33
169	Stable Expanded Porphyceneâ€Based Diradicaloid and Tetraradicaloid. Angewandte Chemie - International Edition, 2018, 57, 12534-12537.	7.2	33
170	Octupolar Polycyclic Aromatic Hydrocarbons as New Twoâ€Photon Absorption Chromophores: Synthesis and Application for Optical Power Limiting. Chemistry - A European Journal, 2011, 17, 3837-3841.	1.7	32
171	Conformal graphene encapsulation of tin oxide nanoparticle aggregates for improved performance in reversible Li+ storage. Nanoscale, 2013, 5, 5965.	2.8	32
172	Diradical approach toward organic near infrared dyes. Tetrahedron Letters, 2016, 57, 5426-5434.	0.7	32
173	Toward Stable Superbenzoquinone Diradicaloids. Angewandte Chemie - International Edition, 2017, 56, 5012-5016.	7.2	32
174	Efficient Preparation of Separable Pseudo[<i>n</i>]rotaxanes by Selective Threading of Oligoalkylammonium Salts with Cucurbit[7]uril. Chemistry - A European Journal, 2009, 15, 6050-6057.	1.7	31
175	Synthesis of functionalized tetracene dicarboxylic imides. Tetrahedron Letters, 2010, 51, 6313-6315.	0.7	31
176	Template-directed synthesis of kinetically and thermodynamically stable molecular necklace using ring closing metathesis. Organic and Biomolecular Chemistry, 2011, 9, 3504.	1.5	31
177	Enhanced absorbance and electron collection in inverted organic solar cells: Optical admittance and transient photocurrent analyses. Organic Electronics, 2014, 15, 1306-1311.	1.4	31
178	Higher Order Acenes and Fused Acenes with Near-infrared Absorption and Emission. Australian Journal of Chemistry, 2011, 64, 519.	0.5	30
179	6,13-Dicyano pentacene-2,3:9,10-bis(dicarboximide) for solution-processed air-stable n-channel field effect transistors and complementary circuit. Journal of Materials Chemistry C, 2013, 1, 456-462.	2.7	30
180	Coveâ€Edged Nanographenes with Localized Double Bonds. Angewandte Chemie - International Edition, 2020, 59, 8113-8117.	7.2	30

#	Article	IF	CITATIONS
181	Machine Vision Automated Chiral Molecule Detection and Classification in Molecular Imaging. Journal of the American Chemical Society, 2021, 143, 10177-10188.	6.6	30
182	Effect of Intermolecular Dipoleâ^'Dipole Interactions on Interfacial Supramolecular Structures of <i>C</i> ₃ -Symmetric Hexa- <i>peri</i> -hexabenzocoronene Derivatives. Langmuir, 2011, 27, 1314-1318.	1.6	29
183	Water induced zinc oxide thin film formation and its transistor performance. Journal of Materials Chemistry C, 2014, 2, 5397-5403.	2.7	29
184	Thiophene–tetrafluorophenyl–thiophene: a promising building block for ambipolar organic field effect transistors. Journal of Materials Chemistry C, 2015, 3, 2080-2085.	2.7	29
185	High-Mobility Ambipolar Organic Thin-Film Transistor Processed From a Nonchlorinated Solvent. ACS Applied Materials & Interfaces, 2016, 8, 24325-24330.	4.0	29
186	From Open‣hell Singlet Diradicaloid to Closed‣hell Global Antiaromatic Macrocycles. Angewandte Chemie - International Edition, 2018, 57, 7166-7170.	7.2	29
187	Large Aromatic Hydrocarbon Radical Cation with Global Aromaticity and State-Associated Magnetic Activity. Chemistry of Materials, 2020, 32, 5927-5936.	3.2	29
188	Hexa-peri-hexabenzocoronene/perylenedicarboxymonoimide and diimide dyads as models to study intramolecular energy transfer. Tetrahedron Letters, 2005, 46, 1565-1568.	0.7	28
189	Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states. Journal of Chemical Physics, 2014, 140, 054706.	1.2	28
190	Stable ï€â€Extended <i>p</i> â€Quinodimethanes: Synthesis and Tunable Ground States. Chemical Record, 2015, 15, 322-328.	2.9	28
191	Push–Pullâ€Type Polychlorotriphenylmethyl Radicals: New Twoâ€Photon Absorbers and Dyes for Generation of Photoâ€Charges. Chemistry - A European Journal, 2017, 23, 7698-7702.	1.7	28
192	Expanded Kekulenes. Journal of the American Chemical Society, 2021, 143, 13908-13916.	6.6	28
193	Incorporating TCNQ into Thiophene-Fused Heptacene for n-Channel Field Effect Transistor. Organic Letters, 2012, 14, 2786-2789.	2.4	27
194	Push–pull type porphyrin based sensitizers: The effect of donor structure on the light-harvesting ability and photovoltaic performance. Dyes and Pigments, 2015, 122, 199-205.	2.0	27
195	Triphenylethylene- and Tetraphenylethylene-Functionalized 1,3-Bis(pyrrol-2-yl)squaraine Dyes: Synthesis, Aggregation-Caused Quenching to Aggregation-Induced Emission, and Thiol Detection. ACS Omega, 2018, 3, 16424-16435.	1.6	27
196	Ï€-Extended Doublet Open-Shell Graphene Fragments Exhibiting One-Dimensional Chain Stacking. Journal of the American Chemical Society, 2022, 144, 2095-2100.	6.6	27
197	Kinetically Blocked Stable 5,6:12,13-Dibenzozethrene: A Laterally π-Extended Zethrene with Enhanced Diradical Character. Organic Letters, 2016, 18, 2886-2889.	2.4	26
198	A Diradical Approach towards BODIPYâ€Based Dyes with Intense Nearâ€Infrared Absorption around <i>λ</i> =1100â€nm. Angewandte Chemie, 2016, 128, 2865-2869.	1.6	26

#	Article	IF	CITATIONS
199	Metal oxide heterojunctions for high performance solution grown oxide thin film transistors. Applied Surface Science, 2020, 527, 146774.	3.1	26
200	Negative Phototransistors with Ultrahigh Sensitivity and Weakâ€Light Detection Based on 1D/2D Molecular Crystal p–n Heterojunctions and their Application in Light Encoders. Advanced Materials, 2022, 34, e2201364.	11.1	26
201	A phosphorescent hexa-peri-hexabenzocoronene platinum complex and its time-resolved spectroscopy. Synthetic Metals, 2006, 156, 1182-1186.	2.1	25
202	Soluble and Stable Near-Infrared Dyes Based on Polycyclic Aromatics. Current Organic Chemistry, 2010, 14, 2145-2168.	0.9	25
203	<i>Bay</i> - and <i>Ortho</i> -Octasubstituted Perylenes. Organic Letters, 2017, 19, 5094-5097.	2.4	25
204	Aggregationâ€induced emission active 3,6â€bis(1,2,2â€triphenylvinyl)carbazole and bis(4â€(1,2,2â€triphenylvinyl)phenyl)amineâ€based poly(acrylates) for explosive detection. Journal of Polymer Science Part A, 2017, 55, 672-681.	2.5	25
205	Curved π-conjugated corannulene dimer diradicaloids. Chemical Science, 2018, 9, 5100-5105.	3.7	25
206	Fine-tuning the diradical character of molecular systems <i>via</i> the heteroatom effect. Chemical Communications, 2020, 56, 1405-1408.	2.2	25
207	Benzidine/Quinoidalâ€Benzidineâ€Linked, Superbenzeneâ€Based π onjugated Chiral Macrocycles and Cyclophanes. Angewandte Chemie - International Edition, 2020, 59, 9727-9735.	7.2	25
208	Nearâ€Infrared Lasing in Fourâ€Zigzag Edged Nanographenes by 1D versus 2D Electronic π onjugation. Advanced Functional Materials, 2021, 31, 2105073.	7.8	25
209	Synthesis and Structural Elucidation of Bisdibenzocorannulene in Multiple Redox States. Angewandte Chemie - International Edition, 2021, 60, 19790-19796.	7.2	25
210	Carbonization of Disclike Molecules in Porous Alumina Membranes: Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angewandte Chemie, 2005, 117, 2158-2161.	1.6	24
211	Toward Long Rylene Ribbons and Quinoidal Rylene Diradicaloids. European Journal of Organic Chemistry, 2018, 2018, 7-17.	1.2	24
212	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie - International Edition, 2020, 59, 14927-14934.	7.2	24
213	A Stable Allâ€Thiopheneâ€Based Coreâ€Modified [38]Octaphyrin Diradicaloid: Conformation and Aromaticity Switch at Different Oxidation States. Angewandte Chemie - International Edition, 2020, 59, 7414-7418.	7.2	23
214	Metal Amidoboranes: Superior Doubleâ€Hydrogenâ€Transfer Agents in the Reduction of Ketones and Imines. Chemistry - A European Journal, 2012, 18, 13885-13892.	1.7	22
215	Superâ€heptazethrene. Angewandte Chemie, 2016, 128, 8757-8761.	1.6	22
216	Toward Benzobis(thiadiazole)â€based Diradicaloids. Chemistry - an Asian Journal, 2017, 12, 2177-2182.	1.7	22

#	Article	IF	CITATIONS
217	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie, 2018, 130, 8139-8143.	1.6	22
218	Atomic-Level Electronic Properties of Carbon Nitride Monolayers. ACS Nano, 2020, 14, 14008-14016.	7.3	22
219	Hydrothermal synthesis of ultra-thin LiFePO4 platelets for Li-ion batteries. Journal of Materials Science, 2011, 46, 4906-4912.	1.7	21
220	Intramolecular Domino Electrophilic and Thermal Cyclization of <i>peri</i> â€Ethynylene Naphthalene Oligomers. Chemistry - A European Journal, 2011, 17, 14907-14915.	1.7	21
221	Trifluoromethyl acting as stopper in [2]rotaxane. Chemical Communications, 2012, 48, 4821.	2.2	21
222	TiOx/Al bilayer as cathode buffer layer for inverted organic solar cell. Applied Physics Letters, 2013, 103, .	1.5	21
223	BODIPYâ€Based Antiaromatic Macrocycles: Facile Synthesis by Knoevenagel Condensation and Unusual Aggregationâ€Enhanced Twoâ€Photon Absorption Properties. Chemistry - A European Journal, 2018, 24, 2232-2241.	1.7	21
224	Perylene Ï€â€Bridges Equally Delocalize Anions and Cations: Proportioned Quinoidal and Aromatic Content. Angewandte Chemie - International Edition, 2019, 58, 14467-14471.	7.2	21
225	Facile Synthesis of Aryl-Substituted Cycloarenes via Bismuth(III) Triflate-Catalyzed Cyclization of Vinyl Ethers. CCS Chemistry, 2021, 3, 1445-1452.	4.6	21
226	Enforced liquid crystalline properties of dibenzo[a,c]phenazine dimer and self assembly. Journal of Materials Chemistry, 2011, 21, 1704-1712.	6.7	20
227	Synthesis of [2]Catenanes by Template-Directed Clipping Approach. Journal of Organic Chemistry, 2012, 77, 7129-7135.	1.7	20
228	Benzo[1,2-c;4,5-c′]Bis[1,2,5]Thiadiazole in Organic Optoelectronics: A Mini-Review. Journal of Molecular and Engineering Materials, 2015, 03, 1540003.	0.9	20
229	Development of pHâ€Responsive BODIPY Probes for Staining Late Endosome in Live Cells. ChemPlusChem, 2016, 81, 1209-1215.	1.3	20
230	Controlling aggregation and crystallization of solution processed diketopyrrolopyrrole based polymer for high performance thin film transistors by pre-metered slot die coating process. Organic Electronics, 2016, 36, 113-119.	1.4	20
231	Radical and Diradical Formation in Naphthalene Diimides through Simple Chemical Oxidation. ChemPhysChem, 2017, 18, 591-595.	1.0	20
232	Push–pull type meso-ester substituted BODIPY near-infrared dyes as contrast agents for photoacoustic imaging. Organic and Biomolecular Chemistry, 2017, 15, 4531-4535.	1.5	20
233	Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition. Nature Communications, 2017, 8, 677.	5.8	20
234	Anion–π interactions of highly π-acidic dipyridinium-naphthalene diimide salts. Chemical Communications, 2018, 54, 7374-7377.	2.2	20

#	Article	IF	CITATIONS
235	[n]Cyclo-para-biphenylmethine Polyradicaloids: [n]Annulene Analogs and Unusual Valence Tautomerization. CheM, 2019, 5, 108-121.	5.8	20
236	Molecular Alignment and Electronic Structure of <i>N</i> , <i>N</i> ≜2-Dibutyl-3,4,9,10-perylene-tetracarboxylic-diimide Molecules on MoS ₂ Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 5566-5573.	4.0	19
237	Dearomatization Approach Toward a Superbenzoquinoneâ€Based Diradicaloid, Tetraradicaloid, and Hexaradicaloid. Angewandte Chemie - International Edition, 2019, 58, 14319-14326.	7.2	19
238	Strainâ€Induced Isomerization in Oneâ€Dimensional Metal–Organic Chains. Angewandte Chemie, 2019, 131, 18764-18770.	1.6	19
239	Chemical design and synthesis of superior single-atom electrocatalysts <i>via in situ</i> polymerization. Journal of Materials Chemistry A, 2020, 8, 17683-17690.	5.2	19
240	Redoxactive Phenylacetylene Monodendrons:  Rapid Solid-Phase Synthesis and Their Electrochemical Properties. Macromolecules, 2001, 34, 3812-3814.	2.2	18
241	Improve the Operational Stability of the Inverted Organic Solar Cells Using Bilayer Metal Oxide Structure. ACS Applied Materials & amp; Interfaces, 2014, 6, 18861-18867.	4.0	18
242	Nâ€Annulated Peryleneâ€Substituted and Fused Porphyrin Dimers with Intense Nearâ€Infrared Oneâ€Photon and Twoâ€Photon Absorption. Chemistry - A European Journal, 2015, 21, 3708-3715.	1.7	18
243	Toward Stable Superbenzoquinone Diradicaloids. Angewandte Chemie, 2017, 129, 5094-5098.	1.6	18
244	Porphyrin/Quinoidalâ€Bithiopheneâ€Based Macrocycles and Their Dications: Templateâ€Free Synthesis and Global Aromaticity. Angewandte Chemie - International Edition, 2020, 59, 2230-2234.	7.2	18
245	Facile Synthesis of a Fully Fused, Three-Dimensional π-Conjugated Archimedean Cage with Magnetically Shielded Cavity. Journal of the American Chemical Society, 2021, 143, 14314-14321.	6.6	18
246	Coveâ€Edged Nanographenes with Localized Double Bonds. Angewandte Chemie, 2020, 132, 8190-8194.	1.6	18
247	A new solid-supported iterative divergent/convergent strategy for the synthesis of dendrimers. Tetrahedron Letters, 2001, 42, 2181-2184.	0.7	17
248	Highly Twisted 1,2:8,9â€Dibenzozethrenes: Synthesis, Ground State, and Physical Properties. ChemPlusChem, 2014, 79, 1549-1553.	1.3	17
249	Cyclopenta-fused perylene: a new soluble, stable and functionalizable rylene building block. Science Bulletin, 2015, 60, 1266-1271.	4.3	17
250	9-Ethynylfluoroenyl Radicals: Regioselective Dimerization and Post Ring-Cyclization Reactions. Organic Letters, 2016, 18, 6018-6021.	2.4	17
251	Stable Nitrogenâ€Centered Bis(imino)rylene Diradicaloids. Chemistry - A European Journal, 2018, 24, 4944-4951.	1.7	17
252	Tetrabenzo-Chichibabin's hydrocarbons: substituent effects and unusual thermochromic and thermochromic and thermomagnetic behaviours. Chemical Communications, 2018, 54, 2389-2392.	2.2	17

#	Article	IF	CITATIONS
253	Global Aromaticity in Macrocyclic Cyclopentaâ€Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. Angewandte Chemie, 2018, 130, 13236-13240.	1.6	17
254	Nitrogen-doped heptazethrene and octazethrene diradicaloids. Chemical Communications, 2019, 55, 9100-9103.	2.2	17
255	Scholl Reaction of Peryleneâ€Based Polyphenylene Precursors under Different Conditions: Formation of Hexagon or Octagon?. Angewandte Chemie, 2021, 133, 17795-17804.	1.6	17
256	Nanoscale architectures for molecular electronics: Vibrational spectroscopy and structure of solid hexa-n-dodecyl-hexa-peri-hexabenzocoronene. Journal of Chemical Physics, 2005, 123, 144706.	1.2	16
257	9,9′-Anthryl-anthroxyl radicals: strategic stabilization of highly reactive phenoxyl radicals. Chemical Communications, 2015, 51, 6734-6737.	2.2	16
258	A Threeâ€Dimensionally Ï€â€Conjugated Diradical Molecular Cage. Angewandte Chemie, 2017, 129, 15585-15589.	1.6	16
259	Conformationally Flexible Bis(9â€fluorenylidene)porphyrin Diradicaloids. Angewandte Chemie, 2017, 129, 13669-13673.	1.6	16
260	Controllable Self-Assembly of PTCDI-C8 for High Mobility Low-Dimensional Organic Field-Effect Transistors. ACS Applied Electronic Materials, 2019, 1, 2030-2036.	2.0	16
261	Surface molecular doping of all-inorganic perovskite using zethrenes molecules. Nano Research, 2019, 12, 77-84.	5.8	16
262	Perylene Monoimide Dimers Enhance Ternary Organic Solar Cells Efficiency by Induced D–A Crystallinity. ACS Applied Energy Materials, 2019, 2, 305-311.	2.5	16
263	Fused Quinoidal Dithiopheneâ€Based Helicenes: Synthesis by Intramolecular Radical–Radical Coupling Reactions and Dynamics of Interconversion of Enantiomers. Angewandte Chemie - International Edition, 2021, 60, 10326-10333.	7.2	16
264	A phthalimide-fused naphthalene diimide with high electron affinity for a high performance n-channel field effect transistor. RSC Advances, 2013, 3, 6775.	1.7	15
265	A sulfur-containing hetero-octulene: synthesis, host–guest properties, and transistor applications. Chemical Communications, 2020, 56, 9990-9993.	2.2	15
266	A cyclopenta-fused dibenzo[<i>b</i> , <i>d</i>]thiophene- <i>co</i> -phenanthrene macrocyclic tetraradicaloid. Chemical Science, 2021, 12, 3952-3957.	3.7	15
267	All are aromatic: A 3D globally aromatic cage containing five types of 2D aromatic macrocycles. CheM, 2021, 7, 3442-3453.	5.8	15
268	Hückel―and Bairdâ€Type Global Aromaticity in a 3D Fully Conjugated Molecular Cage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
269	Ambient Stable Radical Cations, Diradicaloid Ï€â€Dimeric Dications, Closedâ€Shell Dications, and Diradical Dications of Methylthioâ€Capped Rylenes. Chemistry - A European Journal, 2017, 23, 7595-7606.	1.7	14
270	Dual Amplified Spontaneous Emission and Lasing from Nanographene Films. Nanomaterials, 2020, 10, 1525.	1.9	14

#	Article	IF	CITATIONS
271	Real-Space Imaging of a Single-Molecule Monoradical Reaction. Journal of the American Chemical Society, 2020, 142, 13550-13557.	6.6	14
272	Isomeric Dibenzoheptazethrenes for Air‣table Organic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 16366-16372.	1.6	14
273	Quinoidal Oligo(9,10â€anthryl)s with Chain‣engthâ€Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release. Chemistry - A European Journal, 2015, 21, 18724-18729.	1.7	13
274	N-Annulated perylene as a donor in cyclopentadithiophene based sensitizers: the effect of the linking mode. Journal of Materials Chemistry C, 2016, 4, 3709-3714.	2.7	13
275	A Stable <i>N</i> â€Annulated Peryleneâ€Bridged Bisphenoxyl Diradicaloid and the Corresponding Boron Trifluoride Complex. Chemistry - A European Journal, 2017, 23, 9419-9424.	1.7	13
276	From Open‧hell Singlet Diradicaloid to Closed‧hell Global Antiaromatic Macrocycles. Angewandte Chemie, 2018, 130, 7284-7288.	1.6	13
277	Degradation Chemistry and Kinetic Stabilization of Magnetic Crl ₃ . Journal of the American Chemical Society, 2022, 144, 5295-5303.	6.6	13
278	N-Annulated perylene dyes with adjustable photophysical properties. Tetrahedron Letters, 2011, 52, 6411-6414.	0.7	12
279	Enhanced Performance and Stability of Polymer Solar Cells by In Situ Formed AlO _{<i>x</i>} Passivation and Doping. Journal of Physical Chemistry C, 2017, 121, 10275-10281.	1.5	12
280	A facile approach toward 1,2-diazabenzo[ghi]perylene derivatives: structures and electronic properties. Chemical Communications, 2017, 53, 6740-6743.	2.2	12
281	Visualizing designer quantum states in stable macrocycle quantum corrals. Nature Communications, 2021, 12, 5895.	5.8	12
282	A One-Pot Procedure to Prepare S-Protected 4-lodothiophenols. Synthetic Communications, 2000, 30, 4293-4298.	1.1	11
283	Dithieno-naphthalimide based copolymers for air-stable field effect transistors: synthesis, characterization and device performance. Journal of Materials Chemistry, 2012, 22, 21201.	6.7	11
284	Dual arbon Network for the Effective Transport of Charged Species in a LiFePO ₄ Cathode for Lithiumâ€lon Batteries. Energy Technology, 2015, 3, 63-69.	1.8	11
285	Push–pull type quinoidal perylene showing solvent polarity dependent diradical character and negative solvatochromism. Materials Chemistry Frontiers, 2019, 3, 2668-2672.	3.2	11
286	On‧urface Synthesis of Variable Bandgap Nanoporous Graphene. Small, 2021, 17, e2102246.	5.2	11
287	Stable Oxindolylâ€Based Analogues of Chichibabin's and Müller's Hydrocarbons. Angewandte Chemie, 2017, 129, 14342-14346.	1.6	10
288	Dearomatization Approach Toward a Superbenzoquinoneâ€Based Diradicaloid, Tetraradicaloid, and Hexaradicaloid. Angewandte Chemie, 2019, 131, 14457-14464.	1.6	10

#	Article	IF	CITATIONS
289	Perylene Ï€â€Bridges Equally Delocalize Anions and Cations: Proportioned Quinoidal and Aromatic Content. Angewandte Chemie, 2019, 131, 14609-14613.	1.6	10
290	Anion–π and anion–π-radical interactions in bis(triphenylphosphonium)-naphthalene diimide salts. Organic Chemistry Frontiers, 2019, 6, 110-115.	2.3	10
291	A BODIPY-Bridged Bisphenoxyl Diradicaloid: Solvent-Dependent Diradical Character and Physical Properties. Molecules, 2019, 24, 1446.	1.7	10
292	2,6-/1,5-Naphthoquinodimethane bridged porphyrin dimer diradicaloids. Journal of Porphyrins and Phthalocyanines, 2020, 24, 220-229.	0.4	10
293	Highâ€Performance Liâ€O ₂ Batteries Enabled by Dibenzoâ€24â€Crownâ€8 Aldehyde Derivative as Electrolyte Additives. Advanced Energy Materials, 2022, 12, .	10.2	10
294	The Chemical Desymmetrisation of Two- and Three-Dimensional Polyphenylenes as a Key Step to Functional Nanoparticles. Synthesis, 2002, 2002, 1229.	1.2	9
295	Effects of contact treatments on solution-processed n-type dicyano-ovalenediimide and its complementary circuits. RSC Advances, 2013, 3, 8721.	1.7	9
296	Zethrene and expanded zethrenes with tunable ground states and physical properties. Pure and Applied Chemistry, 2014, 86, 529-537.	0.9	9
297	Fabrication of Mesoporous Titania Nanoparticles with Controlled Porosity and Connectivity for Studying the Photovoltaic Properties in Perovskite Solar Cells. ChemNanoMat, 2018, 4, 394-400.	1.5	9
298	Stable <i>meso</i> -Fluorenyl Smaragdyrin Monoradical. Organic Letters, 2018, 20, 445-448.	2.4	9
299	Sulfur-Doped (Dibenzo)heptazethrene and (Dibenzo)octazethrene Diradicaloids. Journal of Organic Chemistry, 2020, 85, 234-240.	1.7	9
300	Periâ€Acenoacene for Solution Processed Distributed Feedback Laser: The Effect of 1,2â€Oxaborine Doping. Advanced Optical Materials, 2022, 10, .	3.6	9
301	1,6â€Anthrazolineâ€Linked Ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie - International Edition, 2021, 60, 25323-25327.	7.2	8
302	Exciton diffusion controlled quantum efficiency in hybrid dye sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 1604.	1.3	7
303	Closed-Shell and Open-Shell 2D Nanographenes. Topics in Current Chemistry, 2012, 349, 197-248.	4.0	7
304	Push–pull type alkoxy-wrapped N-annulated perylenes for dye-sensitized solar cells. RSC Advances, 2016, 6, 81184-81190.	1.7	7
305	BODIPY blocked anthroxyl radicals: the substituent effect on reactivity and fluorescence turn-on detection of a hydroxyl radical. Organic and Biomolecular Chemistry, 2017, 15, 3188-3191.	1.5	7
306	Polycyclic Hydrocarbons with an Open-Shell Ground State. ChemistrySelect, 2017, 2, .	0.7	7

#	Article	IF	CITATIONS
307	Stable Expanded Porphyceneâ€Based Diradicaloid and Tetraradicaloid. Angewandte Chemie, 2018, 130, 12714-12717.	1.6	7
308	Thermally Induced Chiral Aggregation of Dihydrobenzopyrenone on Au(111). ACS Applied Materials & Interfaces, 2020, 12, 35547-35554.	4.0	7
309	Ring-expansion approach towards extended asymmetric benzopentafulvalenes: overcrowded olefinic structure and chain length-dependent properties. Organic Chemistry Frontiers, 2020, 7, 2247-2254.	2.3	7
310	All-benzenoid Polycyclic Aromatic Hydrocarbons: Synthesis, Self-assembly and Applications in Organic Electronics. , 2006, , 90-139.		6
311	Fused Polycyclic Aromatic Compounds with Near Infrared Absorption and Emission. Synlett, 2012, 2012, 171-184.	1.0	6
312	Mechanical bonds and dynamic covalent bonds. Materials Chemistry Frontiers, 2020, 4, 1553-1553.	3.2	6
313	A Stable Allâ€Thiopheneâ€Based Coreâ€Modified [38]Octaphyrin Diradicaloid: Conformation and Aromaticity Switch at Different Oxidation States. Angewandte Chemie, 2020, 132, 7484-7488.	1.6	6
314	A Tetraindeno-Fused Bis(anthraoxa)quinodimethane with Nine Consecutively Fused Six-Membered Rings. Organic Letters, 2021, 23, 3027-3031.	2.4	6
315	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie, 2020, 132, 15037-15044.	1.6	6
316	Hückel―and Bairdâ€Type Global Aromaticity in a 3D Fully Conjugated Molecular Cage. Angewandte Chemie, 2022, 134, .	1.6	6
317	Probing the Electronic State of a Single Coronene Molecule by the Emission from Proximate Fluorophores. ChemPhysChem, 2012, 13, 938-945.	1.0	5
318	Stable 2D anti-ferromagnetically coupled fluorenyl radical dendrons. Chemical Science, 2018, 9, 3395-3400.	3.7	5
319	Benzidine/Quinoidalâ€Benzidineâ€Linked, Superbenzeneâ€Based π onjugated Chiral Macrocycles and Cyclophanes. Angewandte Chemie, 2020, 132, 9814-9822.	1.6	5
320	Recent Progress on Organic Semiconductors for Thin-film Field-effect Transistors. Current Organic Chemistry, 2012, 16, 252-279.	0.9	4
321	Orderly Nanopatterned Indium Tin Oxide Electrode Combined with Atomic‣ayerâ€Đeposited Metal Oxide Interlayer for Inverted Organic Solar Cells. Energy Technology, 2015, 3, 906-912.	1.8	4
322	π onjugated Compounds for Molecular Materials. Chemistry - an Asian Journal, 2019, 14, 1600-1601.	1.7	4
323	Synthesis of a Highly Fluorescent Bis(1,4â€oxaborine)pentacene. ChemPlusChem, 2021, 86, 836-839.	1.3	4
324	Highly Strained 1,8-Naphthalene-Bridged Cyclic Oligophenylenes and Their Open-Shell Diradical Dications. Organic Letters, 2021, 23, 4860-4863.	2.4	4

#	Article	IF	CITATIONS
325	Synthesis and Structural Elucidation of Bisdibenzocorannulene in Multiple Redox States. Angewandte Chemie, 2021, 133, 19943-19949.	1.6	4
326	Dibenzylidene- <i>s</i> -indacenetetraone Linked <i>n</i> -Type Semiconducting Covalent Organic Framework via Aldol Condensation. , 2022, 4, 1154-1159.		4
327	Long rylene nanoribbons express polyacetylene-like signatures at their edges. Physical Chemistry Chemical Physics, 2019, 21, 7281-7287.	1.3	3
328	Porphyrin/Quinoidalâ€Bithiopheneâ€Based Macrocycles and Their Dications: Templateâ€Free Synthesis and Global Aromaticity. Angewandte Chemie, 2020, 132, 2250-2254.	1.6	3
329	Molecular functionalization of all-inorganic perovskite CsPbBr ₃ thin films. Journal of Materials Chemistry C, 2020, 8, 12587-12598.	2.7	3
330	Fused Quinoidal Dithiopheneâ€Based Helicenes: Synthesis by Intramolecular Radical–Radical Coupling Reactions and Dynamics of Interconversion of Enantiomers. Angewandte Chemie, 2021, 133, 10414-10421.	1.6	3
331	Benzo[1,2â€c;4,5â€cʹ]bis[1,2,5]thiadiazoleâ€porphyrinâ€based nearâ€infrared dyes. SmartMat, 2021, 2, 398-	405.4	3
332	Low-Dimensional Porous Carbon Networks Using Single-/Triple-Coupling Polycyclic Hydrocarbon Precursors. ACS Nano, 2022, 16, 9843-9851.	7.3	3
333	Crystal structure of 7,15-bis(4- <i>tert</i> -butylphenyl)-1,9-dimethylheptazethrene. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 99-102.	0.2	2
334	A Stable Nitrogen entered Bis(imino)perylene Dimerâ€based Diradicaloid. Asian Journal of Organic Chemistry, 2020, 9, 1798-1801.	1.3	2
335	Tailoring long-range superlattice chirality in molecular self-assemblies <i>via</i> weak fluorine-mediated interactions. Physical Chemistry Chemical Physics, 2021, 23, 21489-21495.	1.3	2
336	Two-Dimensional Conjugated Covalent Organic Framework Films via Oxidative C–C Coupling Reactions at a Liquid–Liquid Interface. Organic Materials, 2021, 03, 060-066.	1.0	2
337	Cobalt(III) corrole-tethered semiconducting graphdiyne film for efficient electrocatalysis of oxygen reduction reaction. Materials Today Chemistry, 2022, 25, 100932.	1.7	2
338	9. Polycyclic Hydrocarbons with an Open-Shell Ground State. , 2017, , .		1
339	Hexakis(3,6â€diâ€ <i>tert</i> â€butylâ€4â€oxoâ€2,5â€cyclohexadienâ€1â€ylidene)cyclohexane: Closedâ€5hell [Openâ€5hell Hexaâ€Radicaloid?. Chemistry - A European Journal, 2018, 24, 9499-9503.	6]Radiale	ene or I
340	Stable Triarylmethyl Radicals and Cobalt(II) Ions Based 1D/2D Coordination Polymers. Chemistry - A European Journal, 2022, , .	1.7	1
341	Tröger's Base Based Triangular Macrocycles with a Nanoscale Cavity for Chirality-Dependent Packing in Single Crystals. ACS Applied Nano Materials, 2022, 5, 14027-14030.	2.4	1
342	Partially Stripped Insulated Nanowires: A Lightly Substituted Hexa-peri-hexabenzocoronene-Based Columnar Liquid Crystal ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
343	From Branched Hydrocarbon Propellers to C3-Symmetric Graphite Disks ChemInform, 2004, 35, no.	0.1	0
344	New Carbon-Rich Materials for Electronics, Lithium Battery, and Hydrogen Storage Applications. ChemInform, 2005, 36, no.	0.1	0
345	Long n-Alkane Adlayers as Templates for Tailoring Supramolecular Self-Assemblies on Surfaces. Materials Research Society Symposia Proceedings, 2006, 937, 1.	0.1	0

Front Cover: Toward Long Rylene Ribbons and Quinoidal Rylene Diradicaloids (Eur. J. Org. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6

347	Global aromaticity in 2D macrocyclic polyradicaloids and 3D fully conjugated molecular cages. , 2021, , 405-447.		0
348	Synthesis and optical and electronic properties of one-dimensional sulfoxonium-based hybrid metal halide (CH ₃) ₃ SOPbI ₃ . Chemical Communications, 2021, 57, 5790-5793.	2.2	0
349	1,6â€Anthrazolineâ€Linked Ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie, 2021, 133, 25527-25531.	1.6	0
350	Molecular Graphene. , 2014, , 1-6.		0
351	Realizing Two-Dimensional Supramolecular Arrays of a Spin Molecule via Halogen Bonding. ACS Nanoscience Au, 0, , .	2.0	0