
Godson L Asirvatham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of heat transfer using nanofluids—An overview. Renewable and Sustainable Energy Reviews, 2010, 14, 629-641.	8.2	697
2	Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid. Experimental Heat Transfer, 2010, 23, 317-332.	2.3	261
3	Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. International Journal of Heat and Mass Transfer, 2016, 103, 1084-1097.	2.5	202
4	Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1399-1409.	2.0	145
5	Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Experimental Thermal and Fluid Science, 2016, 74, 81-90.	1.5	132
6	Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. International Journal of Heat and Mass Transfer, 2013, 60, 201-209.	2.5	94
7	Thermal performance of miniature loop heat pipe with graphene–water nanofluid. International Journal of Heat and Mass Transfer, 2016, 93, 957-968.	2.5	88
8	Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. International Communications in Heat and Mass Transfer, 2016, 70, 66-74.	2.9	86
9	Convective heat transfer of nanofluids with correlations. Particuology, 2011, 9, 626-631.	2.0	81
10	Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Archives of Civil and Mechanical Engineering, 2014, 14, 489-496.	1.9	81
11	Heat transfer performance of an anodized two-phase closed thermosyphon with refrigerant as working fluid. International Journal of Heat and Mass Transfer, 2015, 82, 521-529.	2.5	79
12	Experimental Study on Forced Convective Heat Transfer with Low Volume Fraction of CuO/Water Nanofluid. Energies, 2009, 2, 97-119.	1.6	77
13	Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. International Journal of Heat and Mass Transfer, 2014, 72, 507-516.	2.5	76
14	Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. International Communications in Heat and Mass Transfer, 2016, 76, 294-300.	2.9	74
15	Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. International Communications in Heat and Mass Transfer, 2014, 57, 208-215.	2.9	71
16	Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. International Journal of Heat and Mass Transfer, 2014, 75, 523-533.	2.5	66
17	An experimental study on two-phase flow patterns and heat transfer characteristics during boiling of R134a flowing through a multi-microchannel heat sink. International Journal of Heat and Mass Transfer, 2016, 98, 390-400.	2.5	56
18	Effect of filling ratio on the performance of a novel miniature loop heat pipe having different diameter transport lines. Applied Thermal Engineering, 2016, 106, 588-600.	3.0	52

#	Article	IF	CITATIONS
19	Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: Thermodynamics model and experimental study. International Journal of Heat and Mass Transfer, 2017, 106, 407-421.	2.5	49
20	Analysing the Performance of a Flat Plate Solar Collector with Silver/Water Nanofluid Using Artificial Neural Network. Procedia Computer Science, 2016, 93, 33-40.	1.2	43
21	Heat Transfer Performance of a Glass Thermosyphon Using Graphene–Acetone Nanofluid. Journal of Heat Transfer, 2015, 137, .	1.2	42
22	Measurement of Thermo Physical Properties of Metallic Nanofluids for High Temperature Applications. Nanoscale and Microscale Thermophysical Engineering, 2010, 14, 152-173.	1.4	38
23	Fluid flow and heat transfer characteristics of heat sinks with laterally perforated plate fins. International Journal of Heat and Mass Transfer, 2019, 138, 293-303.	2.5	38
24	Effect of uniform/non-uniform magnetic field and jet impingement on the hydrodynamic and heat transfer performance of nanofluids. Journal of Magnetism and Magnetic Materials, 2019, 479, 268-281.	1.0	30
25	Heat transfer performance of silver/water nanofluid in a solar flat-plate collector. Journal of Thermal Engineering, 2015, 1, 104.	0.8	30
26	Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy. Experimental Thermal and Fluid Science, 2017, 85, 1-12.	1.5	29
27	Cooling of high heat flux electronic devices using ultra-thin multiport minichannel thermosyphon. Applied Thermal Engineering, 2020, 169, 114669.	3.0	28
28	The role of hybrid nanofluids in improving the thermal characteristics of screen mesh cylindrical heat pipes. Thermal Science, 2016, 20, 2027-2035.	0.5	27
29	Effect of Nanoparticle Coating on the Performance of a Miniature Loop Heat Pipe for Electronics Cooling Applications. Journal of Heat Transfer, 2018, 140, .	1.2	26
30	Convective Heat Transfer Characteristics of Silver-Water Nanofluid Under Laminar and Turbulent Flow Conditions. Journal of Thermal Science and Engineering Applications, 2012, 4, .	0.8	23
31	Heat transfer performance of a compact loop heat pipe with alumina and silver nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 136, 211-222.	2.0	23
32	Performance prediction of hybrid thermoelectric generator with high accuracy using artificial neural networks. Sustainable Energy Technologies and Assessments, 2019, 33, 53-60.	1.7	22
33	Experimental study of condensation heat transfer on hydrophobic vertical tube. International Journal of Heat and Mass Transfer, 2018, 120, 305-315.	2.5	20
34	Performance of cylindrical and flattened heat pipes at various inclinations including repeatability in anti-gravity – A comparative study. Applied Thermal Engineering, 2017, 122, 685-696.	3.0	19
35	Application of the heat pipe to enhance the performance of the vapor compression refrigeration system. Case Studies in Thermal Engineering, 2019, 15, 100531.	2.8	19
36	Experimental Studies on Thermophysical and Electrical Properties of Graphene–Transformer Oil Nanofluid. Fluids, 2020, 5, 172.	0.8	19

#	Article	IF	CITATIONS
37	Experimental study on evaporative heat transfer and pressure drop of R-134a in a horizontal dimpled tube. International Journal of Heat and Mass Transfer, 2019, 144, 118688.	2.5	18
38	Comprehensive case study on heat transfer enhancement using micro pore metal foams: From solar collectors to thermo electric generator applications. Case Studies in Thermal Engineering, 2021, 27, 101333.	2.8	18
39	Absorption refrigeration system using engine exhaust gas as an energy source. Case Studies in Thermal Engineering, 2018, 12, 797-804.	2.8	16
40	An experimental investigation of the air-side performance of crimped spiral fin-and-tube heat exchangers with a small tube diameter. International Journal of Heat and Mass Transfer, 2021, 178, 121571.	2.5	16
41	Operational Limitations of Heat Pipes With Silver-Water Nanofluids. Journal of Heat Transfer, 2013, 135, .	1.2	15
42	Thermal Management of Electronic Devices Using Combined Effects of Nanoparticle Coating and Graphene–Water Nanofluid in a Miniature Loop Heat Pipe. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1241-1253.	1.4	14
43	Thermal Management of Electronic Devices Using Gold and Carbon Nanofluids in a Lid-Driven Square Cavity Under the Effect of Variety of Magnetic Fields. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 1868-1878.	1.4	14
44	Thermal performance enhancement studies using graphite nanofluid for heat transfer applications. Heat Transfer, 2020, 49, 3013-3029.	1.7	13
45	Conjugate heat transfer performance of stepped lid-driven cavity with Al2O3/water nanofluid under forced and mixed convection. SN Applied Sciences, 2021, 3, 1.	1.5	13
46	Effect of pin fin configuration on thermal performance of plate pin fin heat sinks. Case Studies in Thermal Engineering, 2021, 27, 101269.	2.8	13
47	POWER GENERATION FROM COMBUSTED "SYNGAS―USING HYBRID THERMOELECTRIC GENERATOR AND FORECASTING THE PERFORMANCE WITH ANN TECHNIQUE. Journal of Thermal Engineering, 2018, 4, 2149-2168.	0.8	13
48	Nanofluid heat transfer and applications. Journal of Thermal Engineering, 2015, 1, 113.	0.8	13
49	Heat transfer and fluid flow characteristics in a plate heat exchanger filled with copper foam. Heat and Mass Transfer, 2020, 56, 3261-3271.	1.2	12
50	Thermal performance of a vapor chamber for electronic cooling applications. Journal of Mechanical Science and Technology, 2017, 31, 1995-2003.	0.7	11
51	Sizing charts of helical capillary tubes used in refrigeration and air conditioning. Science and Technology for the Built Environment, 2019, 25, 1-10.	0.8	9
52	Feasibility of using multiport minichannel as thermosyphon for cooling of miniaturized electronic devices. Heat Transfer, 2020, 49, 4834-4856.	1.7	9
53	Experimental analysis of parallel plate and crosscut pin fin heat sinks for electronic cooling applications. Thermal Science, 2010, 14, 147-156.	0.5	9
54	Experimental investigation of the heat transfer and pressure drop characteristics of SiO2/water nanofluids flowing through a circular tube equipped with free rotating swirl generators. Heat and Mass Transfer, 2020, 56, 1613-1626.	1.2	8

Godson L Asirvatham

#	Article	IF	CITATIONS
55	Effect of confluence length on the heat transport capability of ultra-thin multiport minichannel thermosyphon. Applied Thermal Engineering, 2022, 201, 117763.	3.0	8
56	An experimental study of the air-side performance of a novel louver spiral fin-and-tube heat exchanger. AEJ - Alexandria Engineering Journal, 2022, 61, 9811-9818.	3.4	7
57	Experimental Investigation on the Performance of a Parallel Plate-Based Active Magnetic Regenerator. International Journal of Air-Conditioning and Refrigeration, 2018, 26, 1850018.	0.8	6
58	Experimental investigation of condensation heat transfer on chlorotriethylsilane coated grooved vertical tube. International Communications in Heat and Mass Transfer, 2019, 108, 104312.	2.9	6
59	Effect of coated mesh wick on the performance of cylindrical heat pipe using graphite nanofluids. Journal of Thermal Analysis and Calorimetry, 2021, 146, 297-309.	2.0	6
60	Experimental and numerical studies on heat transfer enhancement for air conditioner condensers using a wavy fin with a rectangular winglet. Journal of Mechanical Science and Technology, 2020, 34, 4307-4322.	0.7	5
61	Experimental investigation on two-phase heat transfer of R-134a during vaporization in a plate heat exchanger with rough surface. International Journal of Heat and Mass Transfer, 2020, 160, 120221.	2.5	5
62	Convective heat transfer analysis of refined kerosene with alumina particles for rocketry application. Journal of Mechanical Science and Technology, 2018, 32, 1685-1691.	0.7	4
63	Effect of Filling Ratio and Tilt Angle on the Performance of a Mini-Loop Thermosyphon. Journal of Thermal Science and Engineering Applications, 2019, 11, .	0.8	4
64	Effect of geometrical parameters on the evaporative heat transfer and pressure drop of R-134a flowing in dimpled tubes. Heat and Mass Transfer, 2021, 57, 465-479.	1.2	4
65	Combined effects of filling ratio and wick surface coating on thermal performance of cylindrical heat pipes. Heat and Mass Transfer, 2021, 57, 1171-1182.	1.2	4
66	Dynamics of rising bubbles in gradually mixing fluids due to the effect of Rayleigh–Taylor instability. International Journal of Multiphase Flow, 2020, 129, 103288.	1.6	3
67	Heating and cooling capacity of phase change material coupled with screen mesh wick heat pipe for thermal energy storage applications. Thermal Science, 2020, 24, 723-734.	0.5	3
68	FEASIBILITY OF GLYCERIN/Al2O3 NANOFLUID FOR AUTOMOTIVE COOLING APPLICATIONS. Journal of Thermal Engineering, 2020, 6, 619-632.	0.8	3
69	Prediction of Brake Pad Wear Using Various Machine Learning Algorithms. Lecture Notes in Mechanical Engineering, 2022, , 529-543.	0.3	3
70	THERMAL PERFORMANCE OF PLATE FIN HEAT SINK COMBINED WITH COPPER FOAM. Heat Transfer Research, 2019, 50, 1595-1613.	0.9	2
71	Numerical Study on Convective Heat Transfer Characteristics of Silver/Water Nanofluid in Minichannel. Current Nanoscience, 2017, 13, .	0.7	2
72	Experimental Investigations of Glycerin/Al2O3 Nanofluid in the Hydrodynamically Developing Region for Automotive Cooling Applications. Lecture Notes in Mechanical Engineering, 2020, , 541-547.	0.3	1

#	Article	IF	CITATIONS
73	Air-side performance of a micro-channel heat exchanger in wet surface conditions. Thermal Science, 2017, 21, 375-385.	0.5	1
74	Measuring the Temperature-Dependent Thermal Conductivity and Viscosity of Silver-Water Nanofluids. , 2009, , .		0
75	Two-Phase Flow and Heat Transfer Enhancement. Advances in Mechanical Engineering, 2013, 5, 256839.	0.8	Ο
76	Experimental Investigation of Thermo-Physical Properties of Al ₂ O ₃ Nanofluid on Commercially Available Blue Dyed Kerosene for Low Volume Concentration. Nano Hybrids and Composites, 2017, 17, 156-165.	0.8	0
77	Feasibility of Al2O3/Water Nanofluid in a Compact Loop Heat Pipe. Lecture Notes in Mechanical Engineering, 2021, , 467-483.	0.3	0
78	Impact of increased outer wall rotation on convection in a vertical annulus with a stationary heated inner cylinder. Heat Transfer, 2022, 51, 6656-6684.	1.7	0