Brett P Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333932/publications.pdf Version: 2024-02-01

		70961	82410
111	5,796	41	72
papers	5,796 citations	h-index	g-index
112	112	112	5885
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Appraising widespread resprouting but variable levels of postfire seeding in Australian ecosystems: the effect of phylogeny, fire regime and productivity. Australian Journal of Botany, 2022, 70, 114-130.	0.3	5
2	Counting the bodies: Estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators. Diversity and Distributions, 2022, 28, 976-991.	1.9	17
3	Population collapse of a Gondwanan conifer follows the loss of Indigenous fire regimes in a northern Australian savanna. Scientific Reports, 2022, 12, .	1.6	7
4	Investigating the effects of fire management on savanna biodiversity with gridâ€based spatially explicit population simulations. Journal of Applied Ecology, 2021, 58, 677-686.	1.9	2
5	Illuminating denâ€tree selection by an arboreal mammal using terrestrial laser scanning in northern Australia. Remote Sensing in Ecology and Conservation, 2021, 7, 154-168.	2.2	7
6	Variation in feral cat density between two large adjacent islands in Australia. Pacific Conservation Biology, 2021, , .	0.5	3
7	Cats <i>Felis catus</i> as a threat to bats worldwide: a review of the evidence. Mammal Review, 2021, 51, 323-337.	2.2	21
8	Population genomics and conservation management of a declining tropical rodent. Heredity, 2021, 126, 763-775.	1.2	12
9	Bark functional ecology and its influence on the distribution of Australian halfâ€butt eucalypts. Austral Ecology, 2021, 46, 1097-1111.	0.7	7
10	Belowground competition and growth of juvenile trees in a long-unburnt Australian savanna. Forest Ecology and Management, 2021, 491, 119141.	1.4	0
11	Unexpected overlapping use of tree hollows by birds, reptiles and declining mammals in an Australian tropical savanna. Biodiversity and Conservation, 2021, 30, 2977-3001.	1.2	5
12	Sharing meals: Predation on Australian mammals by the introduced European red fox compounds and complements predation by feral cats. Biological Conservation, 2021, 261, 109284.	1.9	14
13	Reptiles as food: predation of Australian reptiles by introduced red foxes compounds and complements predation by cats. Wildlife Research, 2021, 48, 470-480.	0.7	10
14	Northern brown bandicoot (Isoodon macrourus) and common brushtail possum (Trichosurus) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 222

15	Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2021, 2, .	2.6	341
16	A Hollow Argument: Understory Vegetation and Disturbance Determine Abundance of Hollow-Dependent Mammals in an Australian Tropical Savanna. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
17	On the Brink of Extinction: The Small Mammal Decline in Northern Australia. , 2021, , .		2
18	Carbon isotope analysis shows introduced bovines have broader dietary range than the largest native herbivores in an Australian tropical savanna. Austral Ecology, 2020, 45, 109-121.	0.7	10

#	Article	IF	CITATIONS
19	Uptake of â€~Eradicat' feral cat baits by non-target species on Kangaroo Island. Wildlife Research, 2020, 47, 547.	0.7	11
20	Blocked-off: Termitaria cause the overestimation of tree hollow availability by ground-based surveys in northern Australia. Forest Ecology and Management, 2020, 458, 117707.	1.4	6
21	Overlapping den tree selection by three declining arboreal mammal species in an Australian tropical savanna. Journal of Mammalogy, 2020, 101, 1165-1176.	0.6	7
22	Seasonal fine fuel and coarse woody debris dynamics in north Australian savannas. International Journal of Wildland Fire, 2020, 29, 1109.	1.0	6
23	Cat ecology, impacts and management in Australia. Wildlife Research, 2020, 47, i.	0.7	11
24	Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Diversity and Distributions, 2020, 26, 832-842.	1.9	34
25	Pre-eradication assessment of feral cat density and population size across Kangaroo Island, South Australia. Wildlife Research, 2020, 47, 669.	0.7	8
26	Targeted sampling successfully detects the cryptic and declining arboreal marsupial (Phascogale) Tj ETQq0 0 0 rg	gBT/Overlo	ock 10 Tf 50
27	Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia. Wildlife Research, 2020, 47, 610.	0.7	16
28	Patterns of niche contraction identify vital refuge areas for declining mammals. Diversity and Distributions, 2020, 26, 1467-1482.	1.9	23
29	Feral cats are more abundant under severe disturbance regimes in an Australian tropical savanna. Wildlife Research, 2020, 47, 624.	0.7	17
30	We need to worry about Bella and Charlie: the impacts of pet cats on Australian wildlife. Wildlife Research, 2020, 47, 523.	0.7	47
31	Does rapid utilization of elevated nutrient availability allow eucalypts to dominate in the tropical savannas of Australia?. Ecology and Evolution, 2020, 10, 4021-4030.	0.8	5
32	Distribution and abundance of large herbivores in a northern Australian tropical savanna: A multiâ€scale approach. Austral Ecology, 2020, 45, 529-547.	0.7	12
33	Seasonal movements and site utilisation by Asian water buffalo (Bubalus bubalis) in tropical savannas and floodplains of northern Australia. Wildlife Research, 2020, , .	0.7	7
34	Introduced cats <i>Felis catus</i> eating a continental fauna: inventory and traits of Australian mammal species killed. Mammal Review, 2019, 49, 354-368.	2.2	50
35	Contrasting patterns of decline in two arboreal marsupials from Northern Australia. Biodiversity and Conservation, 2019, 28, 2951-2965.	1.2	24

Introduced cats (Felis catus) eating a continental fauna: The number of mammals killed in Australia.
Biological Conservation, 2019, 237, 28-40.

#	Article	IF	CITATIONS
37	Detecting and protecting the threatened Kangaroo Island dunnart (Sminthopsis fuliginosus aitkeni). Conservation Science and Practice, 2019, 1, e4.	0.9	2
38	The influence of data source and species distribution modelling method on spatial conservation priorities. Diversity and Distributions, 2019, 25, 1060-1073.	1.9	17
39	Estimating site occupancy and detectability of the threatened partridge pigeon (<i>Geophaps) Tj ETQq1 1 0.784</i>	4314 rgBT 0.7	/Oyerlock 10
40	The existence of a fireâ€mediated treeâ€recruitment bottleneck in an Asian savanna. Journal of Biogeography, 2019, 46, 745-756.	1.4	13
41	Accuracy of identifications of mammal species from camera trap images: A northern Australian case study. Austral Ecology, 2019, 44, 473-483.	0.7	19
42	Towards meaningful monitoring: A case study of a threatened rodent. Austral Ecology, 2019, 44, 223-236.	0.7	10
43	Biomass consumption by surface fires across Earth's most fire prone continent. Global Change Biology, 2019, 25, 254-268.	4.2	39
44	Detecting and protecting the threatened Kangaroo Island dunnart (Sminthopsis fuliginosusaitkeni). Conservation Science and Practice, 2019, 1, e4.	0.9	1
45	Cyclones, fire, and termites: The drivers of tree hollow abundance in northern Australia's mesic tropical savanna. Forest Ecology and Management, 2018, 419-420, 146-159.	1.4	27
46	Declining populations in one of the last refuges for threatened mammal species in northern Australia. Austral Ecology, 2018, 43, 602-612.	0.7	39
47	Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conservation Biology, 2018, 24, 157.	0.5	78
48	Facultative and Obligate Trees in a Mesic Savanna: Fire Effects on Savanna Structure Imply Contrasting Strategies of Eco-Taxonomic Groups. Frontiers in Plant Science, 2018, 9, 644.	1.7	4
49	Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels. Fire, 2018, 1, 14.	1.2	17
50	An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna. Journal of Applied Ecology, 2018, 55, 2124-2134.	1.9	23
51	Topâ€down control of species distributions: feral cats driving the regional extinction of a threatened rodent in northern Australia. Diversity and Distributions, 2017, 23, 272-283.	1.9	47
52	Enumerating a continental-scale threat: How many feral cats are in Australia?. Biological Conservation, 2017, 206, 293-303.	1.9	179
53	Compilation and traits of Australian bird species killed by cats. Biological Conservation, 2017, 216, 1-9.	1.9	40
54	Defining the fire trap: Extension of the persistence equilibrium model in mesic savannas. Austral Ecology, 2017, 42, 890-899.	0.7	19

#	Article	IF	CITATIONS
55	How many birds are killed by cats in Australia?. Biological Conservation, 2017, 214, 76-87.	1.9	128
56	Does inherent flammability of grass and litter fuels contribute to continental patterns of landscape fire activity?. Journal of Biogeography, 2017, 44, 1225-1238.	1.4	38
57	Savanna woody encroachment is widespread across three continents. Global Change Biology, 2017, 23, 235-244.	4.2	442
58	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	1.3	108
59	Fuels and landscape flammability in an Australian alpine environment. Austral Ecology, 2016, 41, 657-670.	0.7	14
60	Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environmental Research Letters, 2016, 11, 035003.	2.2	49
61	Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150169.	1.8	125
62	Pattern, prediction and parsimony in continentalâ€scale synthesis of pyromes: a reply to Gosper <i>etÂal</i> Journal of Biogeography, 2016, 43, 636-638.	1.4	0
63	The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150319.	1.8	103
64	Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes. Environmental Research Letters, 2016, 11, 065002.	2.2	43
65	The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecology and Biogeography, 2016, 25, 1166-1172.	2.7	54
66	Human-Imposed, Fine-Grained Patch Burning Explains the Population Stability of a Fire-Sensitive Conifer in a Frequently Burnt Northern Australia Savanna. Ecosystems, 2016, 19, 896-909.	1.6	18
67	Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. International Journal of Wildland Fire, 2015, 24, 712.	1.0	87
68	Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecology and Evolution, 2015, 5, 1908-1918.	0.8	116
69	Does fire limit tree biomass in Australian savannas?. International Journal of Wildland Fire, 2015, 24, 1.	1.0	41
70	Both fire size and frequency matter—A response to Griffiths et al Biological Conservation, 2015, 192, 477.	1.9	3
71	Prescribed burning protects endangered tropical heathlands of the Arnhem Plateau, northern Australia. Journal of Applied Ecology, 2015, 52, 980-991.	1.9	25
72	A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Science of the Total Environment, 2015, 534, 31-42.	3.9	151

#	Article	IF	CITATIONS
73	Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya, 2015, 6, 169-226.	0.2	80
74	Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example. PLoS ONE, 2015, 10, e0143426.	1.1	71
75	A grass–fire cycle eliminates an obligateâ€seeding tree in a tropical savanna. Ecology and Evolution, 2014, 4, 4185-4194.	0.8	51
76	Abrupt fire regime change may cause landscapeâ€wide loss of mature obligate seeder forests. Global Change Biology, 2014, 20, 1008-1015.	4.2	178
77	Cattle grazing does not reduce fire severity in eucalypt forests and woodlands of the Australian Alps. Austral Ecology, 2014, 39, 462-468.	0.7	15
78	Fire regimes and woody biomass dynamics in Australian savannas. Journal of Biogeography, 2014, 41, 133-144.	1.4	60
79	There is a critical weight range for <scp>A</scp> ustralia's declining tropical mammals. Global Ecology and Biogeography, 2014, 23, 1058-1061.	2.7	26
80	Aborigineâ€managed forest, savanna and grassland: biome switching in montane eastern Australia. Journal of Biogeography, 2014, 41, 1492-1505.	1.4	25
81	Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecology and Biogeography, 2014, 23, 821-824.	2.7	51
82	New research shows alpine grazing does not reduce blazing. Ecos, 2014, , .	0.0	0
83	Fire regimes of <scp>A</scp> ustralia: a pyrogeographic model system. Journal of Biogeography, 2013, 40, 1048-1058.	1.4	215
84	Brave new green world – Consequences of a carbon economy for the conservation of Australian biodiversity. Biological Conservation, 2013, 161, 71-90.	1.9	61
85	Forest fire management, climate change, and the risk of catastrophic carbon losses. Frontiers in Ecology and the Environment, 2013, 11, 66-67.	1.9	104
86	Conservative water management in the widespread conifer genus Callitris. AoB PLANTS, 2013, 5, plt052-plt052.	1.2	25
87	Cultural legacies, fire ecology, and environmental change in the Stone Country of Arnhem Land and Kakadu National Park, Australia. Ecology and Evolution, 2013, 3, 286-297.	0.8	30
88	Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years. Ecology and Evolution, 2012, 2, 34-45.	0.8	36
89	Did central Australian megafaunal extinction coincide with abrupt ecosystem collapse or gradual climate change?. Global Ecology and Biogeography, 2012, 21, 142-151.	2.7	18
90	Tree cover–fire interactions promote the persistence of a fireâ€sensitive conifer in a highly flammable savanna. Journal of Ecology, 2012, 100, 958-968.	1.9	68

#	Article	IF	CITATIONS
91	What controls the distribution of tropical forest and savanna?. Ecology Letters, 2012, 15, 748-758.	3.0	333
92	How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere, 2011, 2, art42.	1.0	174
93	Population structures of the widespread Australian conifer Callitris columellaris are a bio-indicator of continental environmental change. Forest Ecology and Management, 2011, 262, 252-262.	1.4	42
94	Australia—A Model System for the Development of Pyrogeography. Fire Ecology, 2011, 7, 5-12.	1.1	12
95	Firescape ecology: how topography determines the contrasting distribution of fire and rain forest in the south-west of the Tasmanian Wilderness World Heritage Area. Journal of Biogeography, 2011, 38, 1807-1820.	1.4	114
96	Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?. Oecologia, 2011, 166, 229-239.	0.9	31
97	Managing the matrix: decadal responses of eucalyptâ€dominated savanna to ambient fire regimes. Ecological Applications, 2010, 20, 1615-1632.	1.8	30
98	Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics?. Landscape Ecology, 2010, 25, 1247-1260.	1.9	64
99	Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Global Change Biology, 2010, 16, 331-343.	4.2	107
100	Using carbon isotope analysis of the diet of two introduced Australian megaherbivores to understand Pleistocene megafaunal extinctions. Journal of Biogeography, 2010, 37, 499-505.	1.4	22
101	Using generalized autoregressive error models to understand fire–vegetation–soil feedbacks in a mulga–spinifex landscape mosaic. Journal of Biogeography, 2010, 37, 2169-2182.	1.4	42
102	Fire severity in a northern Australian savanna landscape: the importance of time since previous fire. International Journal of Wildland Fire, 2010, 19, 46.	1.0	44
103	The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Functional Ecology, 2009, 23, 1040-1049.	1.7	82
104	Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Forest Ecology and Management, 2009, 257, 66-74.	1.4	52
105	Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications. International Journal of Wildland Fire, 2009, 18, 1.	1.0	155
106	Aboriginal fire use in Australian tropical savannas: Ecological effects and management lessons. , 2009, , 143-167.		14
107	Sources of carbon isotope variation in kangaroo bone collagen and tooth enamel. Geochimica Et Cosmochimica Acta, 2007, 71, 3847-3858.	1.6	34
108	Seasonal water availability predicts the relative abundance of C3and C4grasses in Australia. Global Ecology and Biogeography, 2007, 16, 160-169.	2.7	68

#	Article	IF	CITATIONS
109	The interactive effect of temperature and humidity on the oxygen isotope composition of kangaroos. Functional Ecology, 2007, 21, 757-766.	1.7	34
110	The interdependence of fire, grass, kangaroos and Australian Aborigines: a case study from central Arnhem Land, northern Australia. Journal of Biogeography, 2007, 34, 237-250.	1.4	90
111	Kangaroo metabolism does not cause the relationship between bone collagen ?15N and water availability. Functional Ecology, 2006, 20, 1062-1069.	1.7	137