Brett P Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333932/publications.pdf Version: 2024-02-01

		70961	82410
111	5,796	41	72
papers	5,796 citations	h-index	g-index
112	112	112	5885
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Savanna woody encroachment is widespread across three continents. Global Change Biology, 2017, 23, 235-244.	4.2	442
2	Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2021, 2, .	2.6	341
3	What controls the distribution of tropical forest and savanna?. Ecology Letters, 2012, 15, 748-758.	3.0	333
4	Fire regimes of <scp>A</scp> ustralia: a pyrogeographic model system. Journal of Biogeography, 2013, 40, 1048-1058.	1.4	215
5	Enumerating a continental-scale threat: How many feral cats are in Australia?. Biological Conservation, 2017, 206, 293-303.	1.9	179
6	Abrupt fire regime change may cause landscapeâ€wide loss of mature obligate seeder forests. Global Change Biology, 2014, 20, 1008-1015.	4.2	178
7	How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere, 2011, 2, art42.	1.0	174
8	Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications. International Journal of Wildland Fire, 2009, 18, 1.	1.0	155
9	A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Science of the Total Environment, 2015, 534, 31-42.	3.9	151
10	Kangaroo metabolism does not cause the relationship between bone collagen ?15N and water availability. Functional Ecology, 2006, 20, 1062-1069.	1.7	137
11	How many birds are killed by cats in Australia?. Biological Conservation, 2017, 214, 76-87.	1.9	128
12	Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150169.	1.8	125
13	Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecology and Evolution, 2015, 5, 1908-1918.	0.8	116
14	Firescape ecology: how topography determines the contrasting distribution of fire and rain forest in the south-west of the Tasmanian Wilderness World Heritage Area. Journal of Biogeography, 2011, 38, 1807-1820.	1.4	114
15	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	1.3	108
16	Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Global Change Biology, 2010, 16, 331-343.	4.2	107
17	Forest fire management, climate change, and the risk of catastrophic carbon losses. Frontiers in Ecology and the Environment, 2013, 11, 66-67.	1.9	104
18	The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150319.	1.8	103

#	Article	IF	CITATIONS
19	The interdependence of fire, grass, kangaroos and Australian Aborigines: a case study from central Arnhem Land, northern Australia. Journal of Biogeography, 2007, 34, 237-250.	1.4	90
20	Introduced cats (Felis catus) eating a continental fauna: The number of mammals killed in Australia. Biological Conservation, 2019, 237, 28-40.	1.9	90
21	Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. International Journal of Wildland Fire, 2015, 24, 712.	1.0	87
22	The carbon and nitrogen isotope composition of Australian grasses in relation to climate. Functional Ecology, 2009, 23, 1040-1049.	1.7	82
23	Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya, 2015, 6, 169-226.	0.2	80
24	Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conservation Biology, 2018, 24, 157.	0.5	78
25	Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example. PLoS ONE, 2015, 10, e0143426.	1.1	71
26	Seasonal water availability predicts the relative abundance of C3and C4grasses in Australia. Global Ecology and Biogeography, 2007, 16, 160-169.	2.7	68
27	Tree cover–fire interactions promote the persistence of a fireâ€sensitive conifer in a highly flammable savanna. Journal of Ecology, 2012, 100, 958-968.	1.9	68
28	Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics?. Landscape Ecology, 2010, 25, 1247-1260.	1.9	64
29	Brave new green world – Consequences of a carbon economy for the conservation of Australian biodiversity. Biological Conservation, 2013, 161, 71-90.	1.9	61
30	Fire regimes and woody biomass dynamics in Australian savannas. Journal of Biogeography, 2014, 41, 133-144.	1.4	60
31	The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecology and Biogeography, 2016, 25, 1166-1172.	2.7	54
32	Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Forest Ecology and Management, 2009, 257, 66-74.	1.4	52
33	A grass–fire cycle eliminates an obligateâ€seeding tree in a tropical savanna. Ecology and Evolution, 2014, 4, 4185-4194.	0.8	51
34	Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecology and Biogeography, 2014, 23, 821-824.	2.7	51
35	Introduced cats <i>Felis catus</i> eating a continental fauna: inventory and traits of Australian mammal species killed. Mammal Review, 2019, 49, 354-368.	2.2	50
36	Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environmental Research Letters, 2016, 11, 035003.	2.2	49

#	Article	IF	CITATIONS
37	Topâ€down control of species distributions: feral cats driving the regional extinction of a threatened rodent in northern Australia. Diversity and Distributions, 2017, 23, 272-283.	1.9	47
38	We need to worry about Bella and Charlie: the impacts of pet cats on Australian wildlife. Wildlife Research, 2020, 47, 523.	0.7	47
39	Fire severity in a northern Australian savanna landscape: the importance of time since previous fire. International Journal of Wildland Fire, 2010, 19, 46.	1.0	44
40	Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes. Environmental Research Letters, 2016, 11, 065002.	2.2	43
41	Using generalized autoregressive error models to understand fire–vegetation–soil feedbacks in a mulga–spinifex landscape mosaic. Journal of Biogeography, 2010, 37, 2169-2182.	1.4	42
42	Population structures of the widespread Australian conifer Callitris columellaris are a bio-indicator of continental environmental change. Forest Ecology and Management, 2011, 262, 252-262.	1.4	42
43	Does fire limit tree biomass in Australian savannas?. International Journal of Wildland Fire, 2015, 24, 1.	1.0	41
44	Compilation and traits of Australian bird species killed by cats. Biological Conservation, 2017, 216, 1-9.	1.9	40
45	Declining populations in one of the last refuges for threatened mammal species in northern Australia. Austral Ecology, 2018, 43, 602-612.	0.7	39
46	Biomass consumption by surface fires across Earth's most fire prone continent. Global Change Biology, 2019, 25, 254-268.	4.2	39
47	Does inherent flammability of grass and litter fuels contribute to continental patterns of landscape fire activity?. Journal of Biogeography, 2017, 44, 1225-1238.	1.4	38
48	Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years. Ecology and Evolution, 2012, 2, 34-45.	0.8	36
49	Sources of carbon isotope variation in kangaroo bone collagen and tooth enamel. Geochimica Et Cosmochimica Acta, 2007, 71, 3847-3858.	1.6	34
50	The interactive effect of temperature and humidity on the oxygen isotope composition of kangaroos. Functional Ecology, 2007, 21, 757-766.	1.7	34
51	Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Diversity and Distributions, 2020, 26, 832-842.	1.9	34
52	Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?. Oecologia, 2011, 166, 229-239.	0.9	31
53	Managing the matrix: decadal responses of eucalyptâ€dominated savanna to ambient fire regimes. Ecological Applications, 2010, 20, 1615-1632.	1.8	30
54	Cultural legacies, fire ecology, and environmental change in the Stone Country of Arnhem Land and Kakadu National Park, Australia. Ecology and Evolution, 2013, 3, 286-297.	0.8	30

#	Article	IF	CITATIONS
55	Cyclones, fire, and termites: The drivers of tree hollow abundance in northern Australia's mesic tropical savanna. Forest Ecology and Management, 2018, 419-420, 146-159.	1.4	27
56	There is a critical weight range for <scp>A</scp> ustralia's declining tropical mammals. Global Ecology and Biogeography, 2014, 23, 1058-1061.	2.7	26
57	Conservative water management in the widespread conifer genus Callitris. AoB PLANTS, 2013, 5, plt052-plt052.	1.2	25
58	Aborigineâ€managed forest, savanna and grassland: biome switching in montane eastern Australia. Journal of Biogeography, 2014, 41, 1492-1505.	1.4	25
59	Prescribed burning protects endangered tropical heathlands of the Arnhem Plateau, northern Australia. Journal of Applied Ecology, 2015, 52, 980-991.	1.9	25
60	Contrasting patterns of decline in two arboreal marsupials from Northern Australia. Biodiversity and Conservation, 2019, 28, 2951-2965.	1.2	24
61	An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna. Journal of Applied Ecology, 2018, 55, 2124-2134.	1.9	23
62	Patterns of niche contraction identify vital refuge areas for declining mammals. Diversity and Distributions, 2020, 26, 1467-1482.	1.9	23
63	Using carbon isotope analysis of the diet of two introduced Australian megaherbivores to understand Pleistocene megafaunal extinctions. Journal of Biogeography, 2010, 37, 499-505.	1.4	22
64	Cats <i>Felis catus</i> as a threat to bats worldwide: a review of the evidence. Mammal Review, 2021, 51, 323-337.	2.2	21
65	Defining the fire trap: Extension of the persistence equilibrium model in mesic savannas. Austral Ecology, 2017, 42, 890-899.	0.7	19
66	Accuracy of identifications of mammal species from camera trap images: A northern Australian case study. Austral Ecology, 2019, 44, 473-483.	0.7	19
67	Did central Australian megafaunal extinction coincide with abrupt ecosystem collapse or gradual climate change?. Clobal Ecology and Biogeography, 2012, 21, 142-151.	2.7	18
68	Human-Imposed, Fine-Grained Patch Burning Explains the Population Stability of a Fire-Sensitive Conifer in a Frequently Burnt Northern Australia Savanna. Ecosystems, 2016, 19, 896-909.	1.6	18
69	Conceptualizing Ecological Flammability: An Experimental Test of Three Frameworks Using Various Types and Loads of Surface Fuels. Fire, 2018, 1, 14.	1.2	17
70	The influence of data source and species distribution modelling method on spatial conservation priorities. Diversity and Distributions, 2019, 25, 1060-1073.	1.9	17
71	Feral cats are more abundant under severe disturbance regimes in an Australian tropical savanna. Wildlife Research, 2020, 47, 624.	0.7	17
72	Counting the bodies: Estimating the numbers and spatial variation of Australian reptiles, birds and mammals killed by two invasive mesopredators. Diversity and Distributions, 2022, 28, 976-991.	1.9	17

#	Article	IF	CITATIONS
73	Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia. Wildlife Research, 2020, 47, 610.	0.7	16
74	Cattle grazing does not reduce fire severity in eucalypt forests and woodlands of the Australian Alps. Austral Ecology, 2014, 39, 462-468.	0.7	15
75	Aboriginal fire use in Australian tropical savannas: Ecological effects and management lessons. , 2009, , 143-167.		14
76	Fuels and landscape flammability in an Australian alpine environment. Austral Ecology, 2016, 41, 657-670.	0.7	14
77	Sharing meals: Predation on Australian mammals by the introduced European red fox compounds and complements predation by feral cats. Biological Conservation, 2021, 261, 109284.	1.9	14
78	The existence of a fireâ€mediated treeâ€recruitment bottleneck in an Asian savanna. Journal of Biogeography, 2019, 46, 745-756.	1.4	13
79	Australia—A Model System for the Development of Pyrogeography. Fire Ecology, 2011, 7, 5-12.	1.1	12
80	Distribution and abundance of large herbivores in a northern Australian tropical savanna: A multiâ€scale approach. Austral Ecology, 2020, 45, 529-547.	0.7	12
81	Population genomics and conservation management of a declining tropical rodent. Heredity, 2021, 126, 763-775.	1.2	12
82	Uptake of â€~Eradicat' feral cat baits by non-target species on Kangaroo Island. Wildlife Research, 2020, 47, 547.	0.7	11
83	Cat ecology, impacts and management in Australia. Wildlife Research, 2020, 47, i.	0.7	11
84	Towards meaningful monitoring: A case study of a threatened rodent. Austral Ecology, 2019, 44, 223-236.	0.7	10
85	Carbon isotope analysis shows introduced bovines have broader dietary range than the largest native herbivores in an Australian tropical savanna. Austral Ecology, 2020, 45, 109-121.	0.7	10
86	Reptiles as food: predation of Australian reptiles by introduced red foxes compounds and complements predation by cats. Wildlife Research, 2021, 48, 470-480.	0.7	10
87	Pre-eradication assessment of feral cat density and population size across Kangaroo Island, South Australia. Wildlife Research, 2020, 47, 669.	0.7	8
88	Overlapping den tree selection by three declining arboreal mammal species in an Australian tropical savanna. Journal of Mammalogy, 2020, 101, 1165-1176.	0.6	7
89	Illuminating denâ€ŧree selection by an arboreal mammal using terrestrial laser scanning in northern Australia. Remote Sensing in Ecology and Conservation, 2021, 7, 154-168.	2.2	7
90	Bark functional ecology and its influence on the distribution of Australian halfâ€butt eucalypts. Austral Ecology, 2021, 46, 1097-1111.	0.7	7

#	Article	IF	CITATIONS
91	Seasonal movements and site utilisation by Asian water buffalo (Bubalus bubalis) in tropical savannas and floodplains of northern Australia. Wildlife Research, 2020, , .	0.7	7
92	Population collapse of a Gondwanan conifer follows the loss of Indigenous fire regimes in a northern Australian savanna. Scientific Reports, 2022, 12, .	1.6	7
93	Blocked-off: Termitaria cause the overestimation of tree hollow availability by ground-based surveys in northern Australia. Forest Ecology and Management, 2020, 458, 117707.	1.4	6
94	Seasonal fine fuel and coarse woody debris dynamics in north Australian savannas. International Journal of Wildland Fire, 2020, 29, 1109.	1.0	6
95	A Hollow Argument: Understory Vegetation and Disturbance Determine Abundance of Hollow-Dependent Mammals in an Australian Tropical Savanna. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
96	Does rapid utilization of elevated nutrient availability allow eucalypts to dominate in the tropical savannas of Australia?. Ecology and Evolution, 2020, 10, 4021-4030.	0.8	5
97	Unexpected overlapping use of tree hollows by birds, reptiles and declining mammals in an Australian tropical savanna. Biodiversity and Conservation, 2021, 30, 2977-3001.	1.2	5
98	Appraising widespread resprouting but variable levels of postfire seeding in Australian ecosystems: the effect of phylogeny, fire regime and productivity. Australian Journal of Botany, 2022, 70, 114-130.	0.3	5
99	Facultative and Obligate Trees in a Mesic Savanna: Fire Effects on Savanna Structure Imply Contrasting Strategies of Eco-Taxonomic Groups. Frontiers in Plant Science, 2018, 9, 644.	1.7	4
100	Estimating site occupancy and detectability of the threatened partridge pigeon (<i>Geophaps) Tj ETQq0 0 0 rgB1</i>	[Qverloch	10 Tf 50 38
101	Targeted sampling successfully detects the cryptic and declining arboreal marsupial (Phascogale) Tj ETQq1 1 0.7	84314 rgE	T Overlock]
102	Both fire size and frequency matter—A response to Griffiths et al Biological Conservation, 2015, 192, 477.	1.9	3
103	Variation in feral cat density between two large adjacent islands in Australia. Pacific Conservation Biology, 2021, , .	0.5	3
104	Detecting and protecting the threatened Kangaroo Island dunnart (Sminthopsis fuliginosus aitkeni). Conservation Science and Practice, 2019, 1, e4.	0.9	2
105	Investigating the effects of fire management on savanna biodiversity with gridâ€based spatially explicit population simulations. Journal of Applied Ecology, 2021, 58, 677-686.	1.9	2
106	On the Brink of Extinction: The Small Mammal Decline in Northern Australia. , 2021, , .		2
107	Northern brown bandicoot (Isoodon macrourus) and common brushtail possum (Trichosurus) Tj ETQq1 1 0.7843	0.5 0.5	Overlock 10 T
108	Detecting and protecting the threatened Kangaroo Island dunnart (Sminthopsis fuliginosusaitkeni). Conservation Science and Practice, 2019, 1, e4.	0.9	1

#	Article	IF	CITATIONS
109	Pattern, prediction and parsimony in continentalâ€scale synthesis of pyromes: a reply to Gosper <i>etÂal</i> Journal of Biogeography, 2016, 43, 636-638.	1.4	Ο
110	Belowground competition and growth of juvenile trees in a long-unburnt Australian savanna. Forest Ecology and Management, 2021, 491, 119141.	1.4	0
111	New research shows alpine grazing does not reduce blazing. Ecos, 2014, , .	0.0	0