
Javier Silva-Agredo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. Journal of Environmental Chemical Engineering, 2021, 9, 105685.	6.7	68
2	Understanding the Role of Complexation of Fluoroquinolone and β-Lactam Antibiotics with Iron (III) on the Photodegradation under Solar Light and UVC Light. Water (Switzerland), 2021, 13, 2603.	2.7	5
3	Superior selectivity of high-frequency ultrasound toward chorine containing-pharmaceuticals elimination in urine: A comparative study with other oxidation processes through the elucidation of the degradation pathways. Ultrasonics Sonochemistry, 2021, 80, 105814.	8.2	6
4	Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data in Brief, 2020, 31, 105692.	1.0	8
5	Degradation of ampicillin antibiotic by electrochemical processes: evaluation of antimicrobial activity of treated water. Environmental Science and Pollution Research, 2019, 26, 4404-4414.	5.3	27
6	Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions. Journal of Environmental Chemical Engineering, 2019, 7, 103318.	6.7	37
7	Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Science of the Total Environment, 2019, 670, 623-632.	8.0	88
8	Kinetics, Isotherms and Thermodynamic Modeling of Liquid Phase Adsorption of Crystal Violet Dye onto Shrimp-Waste in Its Raw, Pyrolyzed Material and Activated Charcoals. Applied Sciences (Switzerland), 2019, 9, 5337.	2.5	28
9	Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. Journal of Environmental Management, 2018, 213, 98-108.	7.8	46
10	The effect of different operational parameters on the electrooxidation of indigo carmine on Ti/IrO2-SnO2-Sb2O3. Journal of Environmental Chemical Engineering, 2018, 6, 3010-3017.	6.7	35
11	Effective removal of the antibiotic Nafcillin from water by combining the Photoelectro-Fenton process and Anaerobic Biological Digestion. Science of the Total Environment, 2018, 624, 1095-1105.	8.0	43
12	Removal of Î ² -lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Environmental Science and Pollution Research, 2018, 25, 20293-20303.	5.3	33
13	Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity. Environmental Science and Pollution Research, 2017, 24, 6339-6352.	5.3	55
14	Electrochemical advanced oxidation processes for Staphylococcus aureus disinfection in municipal WWTP effluents. Journal of Environmental Management, 2017, 198, 256-265.	7.8	35
15	Comparative Evaluation of Photo-Chemical AOPs for Ciprofoxacin Degradation: Elimination in Natural Waters and Analysis of pH Effect, Primary Degradation By-Products, and the Relationship with the Antibiotic Activity. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	23
16	Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Research, 2017, 122, 128-138.	11.3	125
17	Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration. Journal of Environmental Management, 2017, 190, 72-79.	7.8	36
18	Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton, Environmental Science and Pollution Research, 2017, 24, 28175-28189.	5.3	30

#	Article	IF	CITATIONS
19	Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Science of the Total Environment, 2017, 575, 1228-1238.	8.0	127
20	High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrasonics Sonochemistry, 2016, 31, 276-283.	8.2	102
21	Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Research, 2016, 94, 1-9.	11.3	121
22	Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO 2 -photocatalysis and electrochemical processes. Science of the Total Environment, 2016, 541, 1431-1438.	8.0	75
23	Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO 2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chemical Engineering Journal, 2016, 284, 953-962.	12.7	81
24	Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system. Science of the Total Environment, 2015, 524-525, 354-360.	8.0	80
25	Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO ₂ photocatalytical treatment of the antibiotic dicloxacillin. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 40-48.	1.7	32
26	Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin. Ultrasonics Sonochemistry, 2015, 22, 211-219.	8.2	77
27	Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix. Ultrasonics Sonochemistry, 2014, 21, 1763-1769.	8.2	107
28	Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochimica Acta, 2014, 140, 427-433.	5.2	89
29	Studies directed to the synthesis of new C-5 spiroannulated julolidines. Tetrahedron, 2002, 58, 8719-8727.	1.9	13
30	Synthesis and spectral data of unknown lilolidine spiro derivatives. Journal of Heterocyclic Chemistry, 1999, 36, 675-679.	2.6	13