Yanjie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333697/publications.pdf

Version: 2024-02-01

		567281	552781
34	727	15	26
papers	citations	h-index	g-index
35	35	35	1153
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced crystallinity and photoluminescence properties of Yb2+ doped SrSi2O2N2 phosphor for image storage applications. Journal of Luminescence, 2022, 242, 118611.	3.1	3
2	Biosafety evaluation of Li ₂ Si ₂ O ₅ whisker-reinforced glass-ceramics. Biomedical Materials (Bristol), 2022, 17, 025011.	3.3	8
3	High-performance red@green core-shell emitting nitride phosphor with monodisperse Eu2+ luminescence centers for solid state lighting. Journal of Alloys and Compounds, 2021, 875, 160076.	5. 5	5
4	Synthesis and photoluminescence properties of KZnPO4: Dy3+, Sm3+. Optik, 2020, 201, 163526.	2.9	8
5	Highly dispersed Eu2+ activated Ca10(PO4)6Cl2 phosphor with enhanced blue emitting through deposition-precipitation process. Optical Materials, 2020, 110, 110529.	3.6	3
6	Synthesis and luminescence properties of single-phase Ca2P2O7:Eu2+, Eu3+ phosphor with tunable red/blue emission. Journal of Materials Science: Materials in Electronics, 2019, 30, 16384-16394.	2.2	8
7	Improved photoluminescence property by homogeneous deposition-precipitation method for Eu2+ doping in Si–N–O frameworks. Journal of Luminescence, 2019, 215, 116646.	3.1	5
8	Preparation of Eu3+-doped CsPbBr3 quantum-dot microcrystals and their luminescence properties. Optical Materials, 2019, 97, 109454.	3 . 6	13
9	Structure and photoluminescence properties of Dy3+ doping in Sr-Si-O-N frameworks for highly efficient white light and optical information storage applications. Optical Materials, 2019, 95, 109250.	3.6	4
10	Remarkable photoluminescence of europium(<scp>ii</scp>)-doped phosphate cyan@red-emitting phosphors with highly dispersed luminescence centers. Chemical Communications, 2019, 55, 198-201.	4.1	11
11	Luminescence and energy transfer mechanism of KZnPO4: Dy3+, Eu3+. Journal of Materials Science: Materials in Electronics, 2019, 30, 9155-9162.	2.2	7
12	Effect of hydroxyapatite nanoparticles and wedelolactone on osteoblastogenesis from bone marrow mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 145-153.	4.0	13
13	Tunable luminescence properties and energy transfer of single-phase Ca4(PO4)2O: Dy3+, Eu2+ multi-color phosphors for warm white light. Journal of Materials Science, 2018, 53, 6414-6423.	3.7	18
14	Influence of Eu3+ concentration on photoluminescence and structure of Ba3Y1 â^ zEuz(BO3)3. Journal of Materials Science: Materials in Electronics, 2018, 29, 14495-14500.	2.2	0
15	Improved luminescence properties and thermal stability of SrSi2O2N2:Eu2+ phosphor with single phase via the formation of Eu3+ on surface structure. Journal of Materials Science, 2017, 52, 7605-7614.	3.7	16
16	Luminescence and energy transfer mechanism of α-Ba3Y(BO3)3:Ce3+,Tb3+. Journal of Luminescence, 2017, 192, 1004-1009.	3.1	21
17	Enhanced photoluminescence property of single-component CaAlSiN3: Ce3+, Eu2+ multicolor phosphor through Ce3+-Eu2+ energy transfer. Journal of Alloys and Compounds, 2017, 727, 633-641.	5.5	17
18	Synthesis, structure and photoluminescence properties of (Sr,Ca)AlSiN3:Eu2+ phosphor for white light emitting diodes with controllable optical performance. Journal of Materials Science: Materials in Electronics, 2017, 28, 86-93.	2.2	5

#	Article	IF	CITATIONS
19	Graphene encapsulated Fe _x Co _y nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate. Catalysis Science and Technology, 2016, 6, 7486-7494.	4.1	72
20	Investigation of oxygen vacancies on Pt- or Au-modified CeO ₂ materials for CO oxidation. RSC Advances, 2016, 6, 70653-70659.	3.6	20
21	Correlation investigation on the visible-light-driven photocatalytic activity and coordination structure of rutile Sn-Fe-TiO2 nanocrystallites for methylene blue degradation. Catalysis Today, 2015, 258, 112-119.	4.4	27
22	Designed synthesis of hydroxyapatite nanostructures: bullet-like single crystal and whiskered hollow ellipsoid. Journal of Materials Science: Materials in Medicine, 2014, 25, 1395-1401.	3.6	7
23	White-light-emitting diode using a single-phase full-color (Ba,Sr)10(PO4)4(SiO4)2:Eu2+ phosphor. Journal of Luminescence, 2014, 147, 250-252.	3.1	11
24	Synergic effect of cation doping and phase composition on the photocatalytic performance of TiO2 under visible light. Catalysis Communications, 2014, 51, 46-52.	3.3	16
25	The roles of hydroxyapatite and FeOx in a Au/FeOx hydroxyapatite catalyst for CO oxidation. Chinese Journal of Catalysis, 2013, 34, 1386-1394.	14.0	27
26	Preparation of hydroxyapatite ceramic through centrifugal casting process using ultra-fine spherical particles as precursor and its decomposition at high temperatures. Journal of Advanced Ceramics, 2012, 1, 60-65.	17.4	10
27	Monomorphic platinum octapod and tripod nanocrystals synthesized by an iron nitrate modified polyol process. Chemical Communications, 2011, 47, 11966.	4.1	13
28	A highly active and sintering-resistant Au/FeO _x â€"hydroxyapatite catalyst for CO oxidation. Chemical Communications, 2011, 47, 1779-1781.	4.1	102
29	Novel Ca-doped CePO4 supported ruthenium catalyst with superior catalytic performance for aerobic oxidation of alcohols. Chemical Communications, 2011, 47, 5307.	4.1	41
30	A novel Au&Pd/Fe(OH)x catalyst for CO+H2 co-oxidations at low temperatures. Journal of Catalysis, 2011, 279, 361-365.	6.2	14
31	Enhanced Catalytic Activities and Characterization of Ruthenium-Grafted Halogenous Hydroxyapatite Nanorod Crystallites. Journal of Physical Chemistry C, 2010, 114, 16443-16450.	3.1	24
32	A Mild and Efficient Biomimetic Synthesis of Rodlike Hydroxyapatite Particles with a High Aspect Ratio Using Polyvinylpyrrolidone As Capping Agent. Crystal Growth and Design, 2008, 8, 2101-2107.	3.0	103
33	The transformation of single-crystal calcium phosphate ribbon-like fibres to hydroxyapatite spheres assembled from nanorods. Nanotechnology, 2008, 19, 155608.	2.6	20
34	A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. Journal of Nanoparticle Research, 2007, 9, 589-594.	1.9	55