
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Systematic Nomenclature for the Insect Brain. Neuron, 2014, 81, 755-765.	3.8	564
2	Structure and Function of the Deutocerebrum in Insects. Annual Review of Entomology, 1989, 34, 477-501.	5.7	336
3	Organization and Functional Roles of the Central Complex in the Insect Brain. Annual Review of Entomology, 2014, 59, 165-184.	5.7	336
4	Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect. Science, 2007, 315, 995-997.	6.0	335
5	Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell and Tissue Research, 1988, 254, 255-81.	1.5	248
6	Central neural coding of sky polarization in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 680-687.	1.8	218
7	Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthropod Structure and Development, 2005, 34, 257-299.	0.8	215
8	Organization of the Circadian System in Insects. Chronobiology International, 1998, 15, 567-594.	0.9	206
9	Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-typeDrosophila melanogasterand of several mutants with altered circadian rhythmicity. Journal of Comparative Neurology, 1993, 337, 177-190.	0.9	197
10	Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell and Tissue Research, 1986, 244, 243-52.	1.5	192
11	Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell and Tissue Research, 1991, 266, 343-357.	1.5	170
12	Neuropeptides in interneurons of the insect brain. Cell and Tissue Research, 2006, 326, 1-24.	1.5	164
13	In search of the sky compass in the insect brain. Die Naturwissenschaften, 2004, 91, 199-208.	0.6	158
14	Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 175, 203-213.	0.7	155
15	Neurons of the Central Complex of the Locust <i>Schistocerca gregaria</i> are Sensitive to Polarized Light. Journal of Neuroscience, 2002, 22, 1114-1125.	1.7	153
16	Immunocytochemistry of GABA in the brain and suboesophageal ganglion ofManduca sexta. Cell and Tissue Research, 1987, 248, 1-24.	1.5	146
17	Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons. Journal of Comparative Neurology, 2008, 511, 454-478.	0.9	144
18	Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Structure and Development, 2008, 37, 347-362.	0.8	140

#	Article	IF	CITATIONS
19	A new peptide in the FMRFamide family isolated from the CNS of the hawkmoth, Manduca sexta. Peptides, 1990, 11, 849-856.	1.2	134

Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca) Tj ETQq000 rgBT /Overlock 10 Tf 5

21	Processing of antennal information in extrinsic mushroom body neurons of the bee brain. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 154, 825-836.	0.7	118
22	Neurotransmitters and neuropeptides in the brain of the locust. Microscopy Research and Technique, 2002, 56, 189-209.	1.2	115
23	Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell and Tissue Research, 2008, 333, 125-145.	1.5	115
24	Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locustSchistocerca gregaria with detailed analysis of immunostaining in the central complex. Journal of Comparative Neurology, 1996, 369, 419-437.	0.9	113
25	Coding of Azimuthal Directions via Time-Compensated Combination of Celestial Compass Cues. Current Biology, 2007, 17, 960-965.	1.8	112
26	Neuroarchitecture of the central complex in the brain of the locustSchistocerca gregaria andS. americana as revealed by serotonin immunocytochemistry. Journal of Comparative Neurology, 1991, 303, 245-254.	0.9	110
27	Crustacean cardioactive peptide-immunoreactive neurons in the hawkmothManduca sexta and changes in their immunoreactivity during postembryonic development. Journal of Comparative Neurology, 1993, 338, 612-627.	0.9	110
28	Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 175, 597.	0.7	110
29	Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell and Tissue Research, 1995, 282, 3-19.	1.5	109
30	Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. Journal of Comparative Neurology, 2003, 462, 415-430.	0.9	107
31	Transformation of Polarized Light Information in the Central Complex of the Locust. Journal of Neuroscience, 2009, 29, 11783-11793.	1.7	105
32	Integration of polarization and chromatic cues in the insect sky compass. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 575-89.	0.7	104
33	Peptide-immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx mothManduca sexta. Journal of Comparative Neurology, 1991, 303, 35-52.	0.9	102
34	Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex. Journal of Neuroscience, 2009, 29, 4911-4921.	1.7	102
35	Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx mothManduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity. Cell and Tissue Research, 1990, 259, 401-419.	1.5	100
36	Interneurones of the central complex in the bee brain (Apis mellifera, L.). Journal of Insect Physiology, 1985, 31, 251-264.	0.9	99

#	Article	IF	CITATIONS
37	Polarization-Sensitive and Light-Sensitive Neurons in Two Parallel Pathways Passing Through the Anterior Optic Tubercle in the Locust Brain. Journal of Neurophysiology, 2005, 94, 3903-3915.	0.9	97
38	Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta. Cell and Tissue Research, 1989, 258, 1-24.	1.5	95
39	Behavioral analysis of polarization vision in tethered flying locusts. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 61-68.	0.7	95
40	Neural Organization of the Circadian System of the CockroachLeucophaea maderae. Chronobiology International, 2003, 20, 577-591.	0.9	88
41	Sky Compass Orientation in Desert Locusts—Evidence from Field and Laboratory Studies. Frontiers in Behavioral Neuroscience, 2015, 9, 346.	1.0	86
42	Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Structure and Development, 2002, 30, 271-280.	0.8	82
43	Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach <i>Leucophaea maderae</i> . Journal of Experimental Biology, 2002, 205, 1459-1469.	0.8	81
44	Immunocytochemistry of dopamine in the brain of the locustSchistocerca gregaria. Journal of Comparative Neurology, 1992, 321, 387-403.	0.9	78
45	Novel insect orcokinins: Characterization and neuronal distribution in the brains of selected dicondylian insects. Journal of Comparative Neurology, 2005, 490, 57-71.	0.9	78
46	Immunocytochemistry of GABA in the central complex of the locustSchistocerca gregaria: Identification of immunoreactive neurons and colocalization with neuropeptides. , 1999, 409, 495-507.		76
47	Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. Journal of Experimental Biology, 2002, 205, 1459-69.	0.8	71
48	Immunocytochemical demonstration of locustatachykinin-related peptides in the central complex of the locust brain. , 1998, 390, 455-469.		69
49	Immunocytochemical mapping of serotonin and neuropeptides in the accessory medulla of the locust,Schistocerca gregaria. Journal of Comparative Neurology, 1995, 362, 305-319.	0.9	68
50	Anatomy and physiology of neurons with processes in the accessory medulla of the cockroachLeucophaea maderae. Journal of Comparative Neurology, 2001, 439, 193-207.	0.9	67
51	Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of the subesophageal ganglion of the tobacco hawkmoth,Manduca sexta: Immunoreactivities to PBAN, and other neuropeptides. Microscopy Research and Technique, 1996, 35, 201-229.	1.2	66
52	Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. Journal of Experimental Biology, 2007, 210, 1350-1361.	0.8	66
53	Implementation of pigmentâ€dispersing factorâ€immunoreactive neurons in a standardized atlas of the brain of the cockroach <i>Leucophaea maderae</i> . Journal of Comparative Neurology, 2010, 518, 4113-4133.	0.9	64
54	The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis. Frontiers in Systems Neuroscience, 2009, 3, 21.	1.2	63

#	Article	IF	CITATIONS
55	Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. Journal of Experimental Biology, 2006, 209, 2794-2803.	0.8	62
56	A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. Journal of Comparative Neurology, 2008, 506, 288-300.	0.9	62
57	Neuroarchitecture of Peptidergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster. PLoS ONE, 2007, 2, e695.	1.1	58
58	Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust,Schistocerca gregaria. Journal of Comparative Neurology, 1997, 386, 329-346.	0.9	57
59	A simple method for immunofluorescent double staining with primary antisera from the same species Journal of Histochemistry and Cytochemistry, 1993, 41, 627-630.	1.3	55
60	Serotonin immunoreactivity in the optic lobes of the sphinx mothManduca sexta and colocalization with FMRFamide and SCPB immunoreactivity. Journal of Comparative Neurology, 1989, 288, 243-253.	0.9	54
61	Topographically distinct visual and olfactory inputs to the mushroom body in the Swallowtail butterfly, <i>Papilio xuthus</i> . Journal of Comparative Neurology, 2015, 523, 162-182.	0.9	53
62	Integration of celestial compass cues in the central complex of the locust brain. Journal of Experimental Biology, 2018, 221, .	0.8	53
63	Widespread Sensitivity to Looming Stimuli and Small Moving Objects in the Central Complex of an Insect Brain. Journal of Neuroscience, 2013, 33, 8122-8133.	1.7	52
64	Histamine-immunoreactive neurons in the midbrain and suboesophageal ganglion of the sphinx mothManduca sexta. Journal of Comparative Neurology, 1991, 307, 647-657.	0.9	51
65	A Distinct Layer of the Medulla Integrates Sky Compass Signals in the Brain of an Insect. PLoS ONE, 2011, 6, e27855.	1.1	50
66	Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta. Cell and Tissue Research, 1995, 279, 249-259.	1.5	49
67	Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex. Frontiers in Behavioral Neuroscience, 2016, 10, 186.	1.0	49
68	Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae. Brain Research, 1999, 842, 408-418.	1.1	48
69	Response Characteristics and Identification of Extrinsic Mushroom Body Neurons of the Bee. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1979, 34, 612-615.	0.6	46
70	Postembryonic development of ?-aminobutyric acid-like Immunoreactivity in the brain of the sphinx mothManduca sexta. Journal of Comparative Neurology, 1994, 339, 132-149.	0.9	45
71	Crustacean cardioactive peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous system of the locust, Locusta migratoria. Cell and Tissue Research, 1995, 279, 495-515.	1.5	45
72	Mas-allatotropin/Lom-AG-myotropin I immunostaining in the brain of the locust, Schistocerca gregaria. Cell and Tissue Research, 2004, 318, 439-457.	1.5	45

#	Article	IF	CITATIONS
73	Receptive Fields of Locust Brain Neurons Are Matched to Polarization Patterns of the Sky. Current Biology, 2014, 24, 2124-2129.	1.8	45
74	Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 451-463.	0.7	43
75	Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. Journal of Neurophysiology, 2015, 113, 3291-3311.	0.9	40
76	Distribution of neuropeptides in the primary olfactory center of the heliothine moth Heliothis virescens. Cell and Tissue Research, 2006, 327, 385-398.	1.5	39
77	Î ³ -Aminobutyric acid immunostaining in the antennal lobe of the moth Heliothis virescens and its colocalization with neuropeptides. Cell and Tissue Research, 2009, 335, 593-605.	1.5	39
78	Polarization-Sensitive Descending Neurons in the Locust: Connecting the Brain to Thoracic Ganglia. Journal of Neuroscience, 2011, 31, 2238-2247.	1.7	38
79	Anatomical organization of the cerebrum of the desert locust Schistocerca gregaria. Cell and Tissue Research, 2018, 374, 39-62.	1.5	38
80	Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, <i>Schistocerca gregaria</i> . Journal of Experimental Biology, 2014, 217, 3557-68.	0.8	37
81	Matched-filter coding of sky polarization results in an internal sun compass in the brain of the desert locust. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25810-25817.	3.3	37
82	Myoinhibitory peptides in the brain of the cockroach <i>Leucophaea maderae</i> and colocalization with pigmentâ€dispersing factor in circadian pacemaker cells. Journal of Comparative Neurology, 2012, 520, 1078-1097.	0.9	36
83	Serotonin-immunoreactive neurons in the brain of Manduca sexta during larval development and larval-pupal metamorphosis. International Journal of Developmental Neuroscience, 1989, 7, 55-72.	0.7	35
84	Evidence for the possible existence of a second polarization-vision pathway in the locust brain. Journal of Insect Physiology, 2010, 56, 971-979.	0.9	35
85	Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach. Journal of Comparative Neurology, 2017, 525, 2343-2357.	0.9	35
86	Localization of nitric oxide synthase in the central complex and surrounding midbrain neuropils of the locustSchistocerca gregaria. Journal of Comparative Neurology, 2005, 484, 206-223.	0.9	32
87	Two Compasses in the Central Complex of the Locust Brain. Journal of Neuroscience, 2019, 39, 3070-3080.	1.7	32
88	Neuroarchitecture of the central complex of the desert locust: Tangential neurons. Journal of Comparative Neurology, 2020, 528, 906-934.	0.9	32
89	Revisiting the anatomy of the central nervous system of a hemimetabolous model insect species: the pea aphid Acyrthosiphon pisum. Cell and Tissue Research, 2011, 343, 343-355.	1.5	30
90	Regulation of cyclic GMP elevation in the developing antennal lobe of the sphinx moth,Manduca sexta. , 1999, 41, 359-375.		29

6

#	Article	IF	CITATIONS
91	Acetylcholinesterase activity in antennal receptor neurons of the sphinx moth Manduca sexta. Cell and Tissue Research, 1990, 262, 245-252.	1.5	28
92	Identification and distribution of SIFamide in the nervous system of the desert locust <i>Schistocerca gregaria</i> . Journal of Comparative Neurology, 2015, 523, 108-125.	0.9	28
93	Orcokinin immunoreactivity in the accessory medulla of the cockroach Leucophaea maderae. Cell and Tissue Research, 2006, 325, 589-600.	1.5	26
94	Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts. Journal of Neurophysiology, 2012, 108, 1695-1710.	0.9	26
95	Candidates for extraocular photoreceptors in the cockroach suggest homology to the lamina and lobula organs in beetles. Journal of Comparative Neurology, 2001, 433, 401-414.	0.9	24
96	Development and steroid regulation of RFamide immunoreactivity in antennal-lobe neurons of the sphinx moth Manduca sexta. Journal of Experimental Biology, 2004, 207, 2389-2400.	0.8	24
97	Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust <i>Schistocerca gregaria</i> . Journal of Comparative Neurology, 2015, 523, 1589-1607.	0.9	24
98	Ocellar interneurons in the honeybee. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 155, 151-160.	0.7	23
99	Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 427-440.	0.7	23
100	Immunocytochemical Localization of Amines and GABA in the Optic Lobe of the Butterfly, Papilio xuthus. PLoS ONE, 2012, 7, e41109.	1.1	23
101	Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, <i>Schistocerca gregaria</i> . Journal of Comparative Neurology, 2013, 521, 2025-2041.	0.9	22
102	Conditional Perception Under Stimulus Ambiguity: Polarization- and Azimuth-Sensitive Neurons in the Locust Brain Are Inhibited by Low Degrees of Polarization. Journal of Neurophysiology, 2011, 105, 28-35.	0.9	21
103	Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types. Journal of Comparative Neurology, 2021, 529, 159-186.	0.9	21
104	A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. ELife, 2021, 10, .	2.8	21
105	NO/cGMP signalling: L-citrulline and cGMP immunostaining in the central complex of the desert locust Schistocerca gregaria. Cell and Tissue Research, 2009, 337, 327-340.	1.5	19
106	Immunocytochemistry of histamine in the brain of the locust Schistocerca gregaria. Cell and Tissue Research, 2004, 317, 195-205.	1.5	18
107	Immunocytochemistry of GABA and glutamic acid decarboxylase in the thoracic ganglion of the crab Eriphia spinifrons. Cell and Tissue Research, 1993, 271, 279-288.	1.5	17
108	Responses of compass neurons in the locust brain to visual motion and leg motor activity. Journal of Experimental Biology, 2019, 222, .	0.8	16

#	Article	IF	CITATIONS
109	Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 43-50.	0.7	15
110	GABA immunostaining in the central complex of dicondylian insects. Journal of Comparative Neurology, 2018, 526, 2301-2318.	0.9	15
111	Insect Brains: Minute Structures Controlling Complex Behaviors. Diversity and Commonality in Animals, 2017, , 123-151.	0.7	14
112	Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell and Tissue Research, 1995, 282, 3-19.	1.5	14
113	Development of pigment-dispersing hormone-like immunoreactivity in the brain of the locust Schistocerca gregaria : comparison with immunostaining for urotensin I and Mas-allatotropin. Cell and Tissue Research, 1996, 285, 127-139.	1.5	13
114	Olfaction in Manduca sexta: Cellular Mechanisms of Responses to Sex Pheromone. , 1992, , 323-338.		10
115	Interaction of compass sensing and object-motion detection in the locust central complex. Journal of Neurophysiology, 2017, 118, 496-506.	0.9	10
116	Organization and neural connections of the lateral complex in the brain of the desert locust. Journal of Comparative Neurology, 2021, 529, 3533-3560.	0.9	10
117	Ultrastructure of GABA- and Tachykinin-Immunoreactive Neurons in the Lower Division of the Central Body of the Desert Locust. Frontiers in Behavioral Neuroscience, 2016, 10, 230.	1.0	8
118	Orcokinin in the central complex of the locust <i>Schistocerca gregaria</i> : Identification of immunostained neurons and colocalization with other neuroactive substances. Journal of Comparative Neurology, 2021, 529, 1876-1894.	0.9	8
119	Neurobiology of polarization vision in the locustSchistocerca gregaria. Acta Biologica Hungarica, 2004, 55, 81-89.	0.7	7
120	Distribution of tachykininâ€related peptides in the brain of the tobacco budworm <i>Heliothis virescens</i> . Journal of Comparative Neurology, 2017, 525, 3918-3934.	0.9	7
121	Tyrosine hydroxylase immunostaining in the central complex of dicondylian insects. Journal of Comparative Neurology, 2021, 529, 3131-3154.	0.9	7
122	Sustained oscillations in an insect visual system. Die Naturwissenschaften, 1998, 85, 238-240.	0.6	6
123	Distribution of acetylcholinesterase activity in the deutocerebrum of the sphinx moth Manduca sexta. Cell and Tissue Research, 1995, 279, 249-259.	1.5	6
124	Receptive field structures for two celestial compass cues at the input stage of the central complex in the locust brain. Journal of Experimental Biology, 2022, , .	0.8	6
125	Synchronization of wing beat cycle of the desert locust, Schistocerca gregaria, by periodic light flashes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 199-211.	0.7	5
126	Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World. PLoS ONE, 2015, 10, e0144501.	1.1	5

#	Article	IF	CITATIONS
127	Neurons in the brain of the desert locust Schistocerca gregaria sensitive to polarized light at low stimulus elevations. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 759-781.	0.7	5
128	Anatomical and ultrastructural analysis of the posterior optic tubercle in the locust Schistocerca gregaria. Arthropod Structure and Development, 2020, 58, 100971.	0.8	4
129	Penzlin - Lehrbuch der Tierphysiologie. , 2021, , .		4
130	Performance of polarization-sensitive neurons of the locust central complex at different degrees of polarization. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 387-403.	0.7	4
131	Myoinhibitory peptides in the central complex of the locust <i>Schistocerca gregaria</i> and colocalization with locustatachykininâ€related peptides. Journal of Comparative Neurology, 2022, 530, 2782-2801.	0.9	4
132	Maplike representation of celestial E-vector orientations in the brain of an insect. E-Neuroforum, 2007, 13, 62-63.	0.2	3
133	Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	0.9	3
134	Distribution and daily oscillation of GABA in the circadian system of the cockroach <i>Rhyparobia maderae</i> . Journal of Comparative Neurology, 2022, 530, 770-791.	0.9	3
135	The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biology, 2022, 20, 26.	1.7	3
136	Crustacean cardioactive peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous system of the locust, Locusta migratoria. Cell and Tissue Research, 1995, 279, 495-515.	1.5	3
137	Visual circuits in arthropod brains. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 105-107.	0.7	2
138	9. Nervous System. , 2003, , 229-266.		1
139	Multisensory Processing in the Insect Brain. Frontiers in Neuroscience, 2004, , .	0.0	1
140	It's all about seeing and hearing: the Editors' and Readers' Choice Awards 2022. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, , 1.	0.7	1
141	Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust <i>Schistocerca gregaria</i> . Journal of Comparative Neurology, 2015, 523, Spc1.	0.9	0
142	Neuronale Systeme. , 2021, , 443-580.		0
143	Neurotransmitters and Neuropeptides in the Olfactory Pathway of the Sphinx Moth Manduca Sexta. , 1986, , 255-258.		0
144	Neural Signal Processing in the Median Protocerebrum of the Bee. , 1987, , 253-264.		0

#	Article	IF	CITATIONS
145	Penzlin - Lehrbuch der Tierphysiologie. , 2015, , .		Ο