Nazish Sayed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333669/publications.pdf Version: 2024-02-01

NAZISH SAVED

#	Article	IF	CITATIONS
1	G3bp1 – microRNA-1 axis regulates cardiomyocyte hypertrophy. Cellular Signalling, 2022, 91, 110245.	1.7	2
2	An evidence appraisal of heart organoids in a dish and commensurability to human heart development in vivo. BMC Cardiovascular Disorders, 2022, 22, 122.	0.7	2
3	Modeling Effects of Immunosuppressive Drugs on Human Hearts Using Induced Pluripotent Stem Cell–Derived Cardiac Organoids and Single-Cell RNA Sequencing. Circulation, 2022, 145, 1367-1369.	1.6	6
4	Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell, 2022, 185, 1676-1693.e23.	13.5	40
5	Induced Pluripotent Stem Cells: How They Will Change the Practice of Cardiovascular Medicine. Methodist DeBakey Cardiovascular Journal, 2021, 9, 206.	0.5	8
6	In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold. Materials Science and Engineering C, 2021, 118, 111354.	3.8	14
7	Arrhythmogenic Mechanisms in Hypokalaemia: Insights From Pre-clinical Models. Frontiers in Cardiovascular Medicine, 2021, 8, 620539.	1.1	14
8	Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Frontiers in Pharmacology, 2021, 12, 607364.	1.6	20
9	Single-Cell Transcriptional Profiling Reveals Sex and Age Diversity of Gene Expression in Mouse Endothelial Cells. Frontiers in Genetics, 2021, 12, 590377.	1.1	17
10	Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell, 2021, 28, 938-954.e9.	5.2	61
11	A protocol for transdifferentiation of human cardiac fibroblasts into endothelial cells via activation of innate immunity. STAR Protocols, 2021, 2, 100556.	0.5	2
12	An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature Aging, 2021, 1, 598-615.	5.3	202
13	Coronary Artery Vasospasm Requiring Cardiac Autotransplantation Yet Controlled With Tobacco. JACC: Case Reports, 2021, 3, 1177-1181.	0.3	1
14	De novo Drug Delivery Modalities for Treating Damaged Hearts: Current Challenges and Emerging Solutions. Frontiers in Cardiovascular Medicine, 2021, 8, 742315.	1.1	2
15	Generation of Human iPSCs by Protein Reprogramming and Stimulation of TLR3 Signaling. Methods in Molecular Biology, 2021, 2239, 153-162.	0.4	4
16	Preoperative Computed Tomography Angiography Reveals Leaflet-Specific Calcification and Excursion Patterns in Aortic Stenosis. Circulation: Cardiovascular Imaging, 2021, 14, 1122-1132.	1.3	2
17	Clinical trial in a dish using iPSCs shows lovastatin improves endothelial dysfunction and cellular cross-talk in LMNA cardiomyopathy. Science Translational Medicine, 2020, 12, .	5.8	56
18	Modeling Secondary Iron Overload Cardiomyopathy with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107886.	2.9	27

NAZISH SAYED

#	Article	IF	CITATIONS
19	HIF1α Regulates Early Metabolic Changes due to Activation of Innate Immunity in Nuclear Reprogramming. Stem Cell Reports, 2020, 14, 192-200.	2.3	22
20	Molecular Signatures of Beneficial Class Effects of Statins on Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation, 2020, 141, 1208-1210.	1.6	6
21	Abstract 325: The Regulation of Endothelial Function Through Hmgcr/mevalonate Pathway Mediated Yap Activity. Circulation Research, 2020, 127, .	2.0	0
22	Abstract 16300: Preoperative Computed Tomography Angiography Reveals Leaflet-specific Contribution to Aortic Stenosis Influenced by Local Coronary Factors. Circulation, 2020, 142, .	1.6	0
23	Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Reports, 2019, 13, 960-969.	2.3	62
24	An <i>in Vivo</i> miRNA Delivery System for Restoring Infarcted Myocardium. ACS Nano, 2019, 13, 9880-9894.	7.3	101
25	Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes asÂaÂModel to Study Trypanosoma cruzi Infection. Stem Cell Reports, 2019, 12, 1232-1241.	2.3	29
26	Glucocorticoid Receptorâ€Binding and Transcriptome Signature in Cardiomyocytes. Journal of the American Heart Association, 2019, 8, e011484.	1.6	42
27	A Human iPSC Double-Reporter System Enables Purification of Cardiac Lineage Subpopulations with Distinct Function and Drug Response Profiles. Cell Stem Cell, 2019, 24, 802-811.e5.	5.2	102
28	Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients With Breast Cancer. Circulation, 2019, 139, 2451-2465.	1.6	136
29	Marked Vascular Dysfunction in a Case of Peripartum Cardiomyopathy. Journal of Vascular Research, 2019, 56, 11-15.	0.6	4
30	Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovascular Research, 2019, 115, 949-959.	1.8	38
31	Cancer therapy-induced cardiomyopathy: can human induced pluripotent stem cell modelling help prevent it?. European Heart Journal, 2019, 40, 1764-1770.	1.0	21
32	A Combination of Itraconazole and Amiodarone Is Highly Effective against Trypanosoma cruzi Infection of Human Stem Cell–Derived Cardiomyocytes. American Journal of Tropical Medicine and Hygiene, 2019, 101, 383-391.	0.6	16
33	Vismione B Interferes with Infection of Vero Cells and Human Stem Cell-Derived Cardiomyocytes. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1359-1368.	0.6	6
34	Esmâ€1 Protects Mice from Glomerular Macrophage Infiltration and Macroalbuminuria in Diabetic Nephropathy. FASEB Journal, 2019, 33, 567.16.	0.2	0
35	Abstract 402: Adiponectin Receptor 3 is Associated With Endothelial Nitric Oxide Synthase Dysfunction and Predicts Insulin Resistance in South Asians. Circulation Research, 2019, 125, .	2.0	0
36	Abstract 782: Human-induced Pluripotent Stem Cell-derived Cardiomyocytes as a Model for Trastuzumab-Induced Cardiac Dysfunction. Circulation Research, 2019, 125, .	2.0	0

NAZISH SAYED

#	Article	IF	CITATIONS
37	Abstract 497: Studying Cardiovascular Effects of Marijuana on Healthy Individuals Using Human Derived Induced Pluripotent Stem Cells. Circulation Research, 2019, 125, .	2.0	0
38	Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development (Cambridge), 2018, 145, .	1.2	182
39	1357. A Combination of Itraconazole and Amiodarone Is Highly Effective Against Trypanosoma cruzi Infection of Human Stem Cell-Derived Cardiomyocytes. Open Forum Infectious Diseases, 2018, 5, S415-S416.	0.4	0
40	Big bottlenecks in cardiovascular tissue engineering. Communications Biology, 2018, 1, 199.	2.0	66
41	Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circulation Research, 2018, 123, 443-450.	2.0	110
42	Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells. Circulation, 2018, 138, 2666-2681.	1.6	112
43	Generation of Endothelial Cells from Human Induced Pluripotent Stem Cells. Bio-protocol, 2018, 8, .	0.2	6
44	Abstract 217: <i> TBX5 ^{Clover2} /NKX2-5 ^{TagRFP} </i> hiPSCs for Simultaneously Isolating Lineage-Specific Cardiovascular Cells. Circulation Research, 2018, 123, .	2.0	0
45	Abstract 472: Large-Scale Single-Cell RNA-Seq Identifies Heterogeneous Populations of Human Primary and Induced Pluripotent Stem Cell-Derived Endothelial Cells. Circulation Research, 2018, 123, .	2.0	0
46	Abstract 209: Downregulation of KLF2 in the Endothelium Contributes to the Pathogenesis in LMNA-related Dilated Cardiomyopathy. Circulation Research, 2018, 123, .	2.0	0
47	High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine, 2017, 9, .	5.8	297
48	Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming. Stem Cells, 2017, 35, 1197-1207.	1.4	27
49	Towards Cardio-Precision medicine. European Heart Journal, 2017, 38, 1014-1016.	1.0	11
50	Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11111-E11120.	3.3	68
51	Paying the Toll in Nuclear Reprogramming. Frontiers in Cell and Developmental Biology, 2017, 5, 70.	1.8	4
52	Vascular Aging: Implications for Cardiovascular Disease and Therapy. Translational Medicine (Sunnyvale, Calif), 2016, 06, .	0.4	53
53	Translation of Human-Induced PluripotentÂStem Cells. Journal of the American College of Cardiology, 2016, 67, 2161-2176.	1.2	209
54	Transcriptome Profiling of Patient-Specific Human iPSC-Cardiomyocytes Predicts Individual Drug Safety and Efficacy Responses InÂVitro. Cell Stem Cell, 2016, 19, 311-325.	5.2	131

NAZISH SAYED

#	Article	IF	CITATIONS
55	Response to Letter Regarding Article "Transdifferentiation of Human Fibroblasts to Endothelial Cells: Role of Innate Immunityâ€: Circulation, 2015, 132, e197.	1.6	2
56	Transdifferentiation of Human Fibroblasts to Endothelial Cells. Circulation, 2015, 131, 300-309.	1.6	146
57	Innate immunity and epigenetic plasticity in cellular reprogramming. Current Opinion in Genetics and Development, 2014, 28, 89-91.	1.5	13
58	Hypothalamic S-Nitrosylation Contributes to the Counter-Regulatory Response Impairment following Recurrent Hypoglycemia. PLoS ONE, 2013, 8, e68709.	1.1	20
59	Therapeutic Transdifferentiation: Can we Generate Cardiac Tissue Rather Than Scar after Myocardial Injury?. Methodist DeBakey Cardiovascular Journal, 2013, 9, 210-212.	0.5	5
60	Abstract 246: Transdifferentiation of Human Fibroblasts to Endothelial Cells: Role of Innate Immunity. Circulation Research, 2013, 113, .	2.0	0
61	Abstract 30: Leveraging the Innate Immunity Pathway for Transdifferentiation of Fibroblasts to Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
62	Endothelial Cells Derived From Nuclear Reprogramming. Circulation Research, 2012, 111, 1363-1375.	2.0	46
63	NaHS relaxes rat cerebral artery in vitro via inhibition of l-type voltage-sensitive Ca2+ channel. Pharmacological Research, 2012, 65, 239-246.	3.1	51
64	Activation of Innate Immunity Is Required for Efficient Nuclear Reprogramming. Cell, 2012, 151, 547-558.	13.5	329
65	Regulation of soluble guanylyl cyclase by phosphorylation. BMC Pharmacology, 2009, 9, .	0.4	0
66	Nitroglycerin-Induced S-nitrosylation and Desensitization of Soluble Guanylyl Cyclase Contribute to Nitrate Tolerance. Circulation Research, 2008, 103, 606-614.	2.0	108
67	PAS-mediated Dimerization of Soluble Guanylyl Cyclase Revealed by Signal Transduction Histidine Kinase Domain Crystal Structure. Journal of Biological Chemistry, 2008, 283, 1167-1178.	1.6	84
68	Protein Kinase G Phosphorylates Soluble Guanylyl Cyclase on Serine 64 and Inhibits Its Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1803-1810.	1.1	37
69	Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12312-12317.	3.3	201
70	Protein kinase G phosphorylates soluble guanylyl cyclase and inhibits its activity. BMC Pharmacology, 2007, 7, .	0.4	0
71	S-nitrosylation of soluble guanylyl cyclase: a novel mechanism of nitrate tolerance?. BMC Pharmacology, 2007, 7, .	0.4	0
72	Desensitization of soluble guanylyl cyclase, the NO-receptor, by S-nitrosylation. BMC Pharmacology, 2007, 7, .	0.4	0

#	Article	IF	CITATIONS
73	Structural insights into sGC. BMC Pharmacology, 2007, 7, S37.	0.4	0
74	NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO Journal, 2007, 26, 578-588.	3.5	208
75	Does soluble guanylyl cyclase need a chaperone?. BMC Pharmacology, 2005, 5, S12.	0.4	0