Ricardo Arenas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333559/publications.pdf

Version: 2024-02-01

97 papers

4,681 citations

76326 40 h-index 65 g-index

99 all docs 99 docs citations 99 times ranked 1291 citing authors

#	Article	IF	CITATIONS
1	Tectonostratigraphy of the Mérida Massif reveals a new Cadomian suture zone exposure in Gondwana (SW Iberia). International Geology Review, 2022, 64, 405-424.	2.1	10
2	Reply to Comment by Azor et al. on "On the Rootless Nature of a Devonian Suture in SW Iberia (Ossaâ€Morena Complex, Variscan Orogen): Geometry and Kinematics of the Azuaga Fault― Tectonics, 2022, 41, .	2.8	2
3	U-Pb geochronology and isotopic geochemistry of adakites and related magmas in the Ediacaran arc section of the SW Iberian Massif: The role of subduction erosion cycles in peri-Gondwanan arcs. Gondwana Research, 2022, 109, 89-112.	6.0	8
4	A unique blueschist facies metapelite with Mg-rich chloritoid from the Badajoz-C \tilde{A}^3 rdoba Unit (SW) Tj ETQq0 0 0 r International Geology Review, 2021, 63, 1634-1657.	gBT /Over 2.1	lock 10 Tf 50
5	100 myr cycles of oceanic lithosphere generation in peri-Gondwana: Neoproterozoic–Devonian ophiolites from the NW African–Iberian margin of Gondwana and the Variscan Orogen. Geological Society Special Publication, 2021, 503, 169-184.	1.3	20
6	Geochemistry and Sm–Nd isotopic sources of Late Ediacaran siliciclastic series in the Ossa–Morena Complex: Iberian–Bohemian correlations. International Journal of Earth Sciences, 2021, 110, 467-485.	1.8	17
7	Whole-rock and Sm–Nd isotopic geochemistry of Triassic SW Iberia sandstones: implications for provenance. Journal of Iberian Geology, 2021, 47, 189-207.	1.3	O
8	Tectonic setting and isotopic sources (Sm–Nd) of the SW Iberian Autochthon (Variscan Orogen). Journal of Iberian Geology, 2021, 47, 121-150.	1.3	12
9	Tracking the Late Devonian high-P metamorphic belt in the Variscan Orogen: New constraints on the PT evolution of eclogites from the Cubito-Moura Unit (SW Iberian Massif). Lithos, 2021, 386-387, 106015.	1.4	4
10	On the Rootless Nature of a Devonian Suture in SW Iberia (Ossaâ€Morena Complex, Variscan Orogen): Geometry and Kinematics of the Azuaga Fault. Tectonics, 2021, 40, e2021TC006791.	2.8	3
11	Geochemical and isotopic (Sm Nd) provenance of Ediacaran-Cambrian metasedimentary series from the lberian Massif. Paleoreconstruction of the North Gondwana margin. Earth-Science Reviews, 2020, 201, 103079.	9.1	20
12	Single subduction zone for the generation of Devonian ophiolites and highâ€P metamorphic belts of the Variscan Orogen (NW Iberia). Terra Nova, 2020, 32, 239-245.	2.1	6
13	Reconstruction of the prograde PT history of high―P migmatitic paragneisses via meltâ€reintegration approach and thermodynamic modelling (Allochthonous Complexes, NW Iberian Massif). Journal of Metamorphic Geology, 2020, 38, 629-653.	3.4	3
14	Updated geochronology and isotope geochemistry of the Vila de Cruces Ophiolite: a case study of a peri-Gondwanan back-arc ophiolite. Geological Society Special Publication, 2020, , SP503-2020-8.	1.3	8
15	Ediacaran Obduction of a Foreâ€Arc Ophiolite in SW Iberia: A Turning Point in the Evolving Geodynamic Setting of Periâ€Gondwana. Tectonics, 2019, 38, 95-119.	2.8	26
16	Contrasting isotopic sources (Sm-Nd) of Late Ediacaran series in the Iberian Massif: Implications for the Central Iberian-Ossa Morena boundary. Precambrian Research, 2019, 324, 194-207.	2.7	19
17	The Calzadilla Ophiolite (SW Iberia) and the Ediacaran fore-arc evolution of the African margin of Gondwana. Gondwana Research, 2018, 58, 71-86.	6.0	32
18	Combined zircon U Pb and Lu Hf isotopes study of magmatism and high-P metamorphism of the basal allochthonous units in the SW Iberian Massif (Ossa-Morena complex). Lithos, 2018, 322, 20-37.	1.4	23

#	Article	IF	CITATIONS
19	Geochemistry and tectonostratigraphy of the basal allochthonous units of SW Iberia (Évora Massif,) Tj ETQq1 1 2017, 268-271, 285-301.	0.784314 1.4	1 rgBT /Ove 29
20	The metahyaloclastitic matrix of a unique metavolcanic block reveals subduction in the Somozas Mélange (Cabo Ortegal Complex, NW Iberia): tectonic implications for the assembly of Pangea. Journal of Metamorphic Geology, 2016, 34, 963-985.	3.4	6
21	Allochthonous terranes involved in the Variscan suture of NW Iberia: A review of their origin and tectonothermal evolution. Earth-Science Reviews, 2016, 161, 140-178.	9.1	71
22	Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth-Science Reviews, 2016, 162, 269-292.	9.1	94
23	Reply to Comment on "The Late Devonian Variscan suture of the Iberian Massif: A correlation of high-pressure belts in NW and SW Iberia― Tectonophysics, 2016, 670, 155-160.	2.2	11
24	Reconstructing subduction polarity through the geochemistry of mafic rocks in a Cambrian magmatic arc along the Gondwana margin (Á"rdenes Complex, NW Iberian Massif). International Journal of Earth Sciences, 2016, 105, 713-725.	1.8	10
25	The last stages of the Avalonian–Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics, 2016, 681, 6-14.	2.2	25
26	The Galicia–Ossa-Morena Zone: Proposal for a new zone of the Iberian Massif. Variscan implications. Tectonophysics, 2016, 681, 135-143.	2.2	45
27	Thickening vs. extension in the Variscan belt: P–T modelling in the Central Iberian autochthon. Tectonophysics, 2016, 681, 144-158.	2.2	22
28	Geochemistry of the Ediacaran–Early Cambrian transition in Central Iberia: Tectonic setting and isotopic sources. Tectonophysics, 2016, 681, 15-30.	2.2	32
29	Provenance of the <scp>HP</scp> – <scp>HT</scp> subducted margin in the Variscan belt (Cabo Ortegal) Tj ETÇ)g <u>1</u> 1 0.78	4314 rgBT
30	The Late Devonian Variscan suture of the Iberian Massif: A correlation of high-pressure belts in NW and SW Iberia. Tectonophysics, 2015, 654, 96-100.	2.2	88
31	Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). Gondwana Research, 2015, 28, 1434-1448.	6.0	54
32	Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation. International Journal of Earth Sciences, 2015, 104, 1107-1121.	1.8	122
33	2-D thermal modeling of HT–LP metamorphism in NW and Central Iberia: Implications for Variscan magmatism, rheology of the lithosphere and orogenic evolution. Tectonophysics, 2015, 657, 21-37.	2.2	34
34	Variscan ophiolites in NW Iberia: Tracking lost Paleozoic oceans and the assembly of Pangea. Episodes, 2015, 38, 315-333.	1.2	37
35	Variscan ophiolites in NW Iberia: Tracking Lost Paleozoic Oceans and the Assembly of Pangea. Episodes, 2015, 38, .	1.2	O
36	Two-stage collision: Exploring the birth of Pangea in the Variscan terranes. Gondwana Research, 2014, 25, 756-763.	6.0	97

#	Article	IF	CITATIONS
37	Re-interpreting the Devonian ophiolites involved in the Variscan suture: U–Pb and Lu–Hf zircon data of the Moeche Ophiolite (Cabo Ortegal Complex, NW Iberia). International Journal of Earth Sciences, 2014, 103, 1385-1402.	1.8	49
38	Correlation of the nappe stack in the Ibero-Armorican arc across the Bay of Biscay: a joint French–Spanish project. Geological Society Special Publication, 2014, 405, 77-113.	1.3	95
39	Large-scale flat-lying isoclinal folding in extending lithosphere: Santa MarÃa de la Alameda dome (Central Iberian Massif, Spain). Lithosphere, 2013, 5, 483-500.	1.4	15
40	Thickening and exhumation of the Variscan roots in the Iberian Central System: Tectonothermal processes and 40Ar/39Ar ages. Tectonophysics, 2013, 587, 207-221.	2.2	64
41	The eclogite facies gneisses of the Cabo Ortegal Complex (NW Iberian Massif): Tectonothermal evolution and exhumation model. Journal of Iberian Geology, 2013, 38, .	1.3	5
42	U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. Journal of the Geological Society, 2012, 169, 655-665.	2.1	52
43	Extensional Flow during Gravitational Collapse: A Tool for Setting Plate Convergence (Padr $ ilde{A}^3$ n) Tj ETQq $1\ 1\ 0.784$:	314 rgBT / 1.4	Oyerlock 10
44	U-Pb Ages of Detrital Zircons from the Permo-Triassic Series of the Iberian Ranges: A Record of Variable Provenance during Rift Propagation. Journal of Geology, 2012, 120, 135-154.	1.4	17
45	Sm–Nd isotope geochemistry and tectonic setting of the metasedimentary rocks from the basal allochthonous units of NW Iberia (Variscan suture, Galicia). Lithos, 2012, 148, 196-208.	1.4	39
46	The Bazar Ophiolite of NW Iberia: a relic of the Iapetus–Tornquist Ocean in the Variscan suture. Terra Nova, 2012, 24, 283-294.	2.1	40
47	The onset of the assembly of Pangaea in NW Iberia: Constraints on the kinematics of continental subduction. Gondwana Research, 2012, 22, 20-25.	6.0	47
48	The Corredoiras orthogneiss (NW Iberian Massif): Geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos, 2012, 128-131, 84-99.	1.4	41
49	Tectonic evolution of a continental subductionâ€exhumation channel: Variscan structure of the basal allochthonous units in NW Spain. Tectonics, 2011, 30, .	2.8	57
50	Isotope geochemistry and revised geochronology of the Purrido Ophiolite (Cabo Ortegal Complex,) Tj ETQq0 0 0 I Journal of the Geological Society, 2011, 168, 733-750.	gBT /Ove 2.1	rlock 10 Tf 5 43
51	One- and two-dimensional models are equally effective in monitoring the crust's thermal response to advection by large-scale thrusting during orogenesis. Computers and Geosciences, 2011, 37, 1205-1207.	4.2	3
52	Fabric Development in a Middle Devonian Intraoceanic Subduction Regime: The Care \tilde{A}^3 n Ophiolite (Northwest Spain). Journal of Geology, 2010, 118, 163-186.	1.4	29
53	A peri-Gondwanan arc in NW Iberial: Isotopic and geochemical constraints on the origin of the arc—A sedimentary approach. Gondwana Research, 2010, 17, 338-351.	6.0	49
54	A peri-Gondwanan arc in NW Iberia. II: Assessment of the intra-arc tectonothermal evolution through U–Pb SHRIMP dating of mafic dykes. Gondwana Research, 2010, 17, 352-362.	6.0	30

#	Article	IF	CITATIONS
55	U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Research, 2010, 18, 385-399.	6.0	149
56	Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. Bulletin of the Geological Society of America, 2010, 122, 219-235.	3.3	110
57	Upper crust reworking during gravitational collapse: the Bembibre–Pico Sacro detachment system (NW Iberia). Journal of the Geological Society, 2010, 167, 769-784.	2.1	40
58	Use of thermal modeling to assess the tectono-metamorphic history of the Lugo and Sanabria gneiss domes, Northwest Iberia. Bulletin - Societie Geologique De France, 2009, 180, 179-197.	2.2	38
59	From Rodinia to Pangaea: ophiolites from NW Iberia as witness for a long-lived continental margin. Geological Society Special Publication, 2009, 327, 317-341.	1.3	15
60	A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus - Geoscience, 2009, 341, 114-126.	1.2	214
61	Tectonic evolution of the upper allochthon of the Olrdenes complex (northwestern Iberian Massif): Structural constraints to a polyorogenic peri-Gondwanan terrane., 2007,,.		37
62	Care \tilde{A}^3 n ophiolite, NW Spain: Suprasubduction zone setting for the youngest Rheic Ocean floor. Geology, 2007, 35, 53.	4.4	93
63	Space and time in the tectonic evolution of the northwestern Iberian Massif: Implications for the Variscan belt. Memoir of the Geological Society of America, 2007, , 403-423.	0.5	148
64	Paleozoic ophiolites in the Variscan suture of Galicia (northwest Spain): Distribution, characteristics, and meaning. Memoir of the Geological Society of America, 2007, , 425-444.	0.5	51
65	Geochemistry of two associated ophiolites from the Cabo Ortegal Complex (Variscan belt of NW) Tj ETQq1 1 0.7	'84314 rgl 0.5	3T /Overlock
66	U-Pb chronometry of polymetamorphic high-pressure granulites: An example from the allochthonous terranes of the NW Iberian Variscan belt. Memoir of the Geological Society of America, 2007, , 469-488.	0.5	55
67	The Vila de Cruces Ophiolite: A Remnant of the Early Rheic Ocean in the Variscan Suture of Galicia (Northwest Iberian Massif). Journal of Geology, 2007, 115, 129-148.	1.4	113
68	Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited. Terra Nova, 2007, 19, 432-439.	2.1	45
69	40Ar/39Ar laserprobe dating of mylonitic fabrics in a polyorogenic terrane of NW Iberia. Journal of the Geological Society, 2006, 163, 61-73.	2.1	57
70	A Uâ€Pb Study of Zircons from a Lower Crustal Granulite Xenolith of the Spanish Central System: A Record of Iberian Lithospheric Evolution from the Neoproterozoic to the Triassic. Journal of Geology, 2006, 114, 471-483.	1.4	41
71	A pre-Rodinian ophiolite involved in the Variscan suture of Galicia (Cabo Ortegal Complex, NW Spain). Journal of the Geological Society, 2006, 163, 737-740.	2.1	21
72	Metamorphic evolution of anthophyllite/cummingtonite-cordierite rocks from the upper unit of the Ordenes Complex (Galicia, NW Spain). European Journal of Mineralogy, 2005, 17, 57-68.	1.3	5

#	Article	IF	CITATIONS
73	Shear stress in subducting continental margin from high-pressure, moderate-temperature metamorphism in the Ordenes Complex, Galicia, NW Spain. Tectonophysics, 2005, 397, 181-194.	2.2	11
74	Large extensional structures developed during emplacement of a crystalline thrust sheet: the Mondoñedo nappe (NW Spain). Journal of Structural Geology, 2003, 25, 1815-1839.	2.3	44
75	Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: inferences from detrital zircon U-Pb ages. Terra Nova, 2003, 15, 138-144.	2.1	69
76	Low-P metamorphism following a Barrovian-type evolution. Complex tectonic controls for a common transition, as deduced in the Mondoñedo thrust sheet (NW Iberian Massif). Tectonophysics, 2003, 365, 143-164.	2.2	55
77	Anticlockwise P-T Path of Granulites from the Monte Castelo Gabbro (Ordenes Complex, NW Spain). Journal of Petrology, 2003, 44, 305-327.	2.8	54
78	Tectonic setting of the Monte Castelo gabbro (Ordenes Complex, northwestern Iberian Massif): Evidence for an arc-related terrane in the hanging wall to the Variscan suture. , 2002, , .		24
79	Contrasting high-pressure metabasites from the Santiago unit (Ordenes Complex, northwestern) Tj ETQq $1\ 1\ 0.78$	34314 rgB1	- Overlock
80	Thrust and detachment systems in the Ordenes Complex (northwestern Spain): Implications for the Variscan-Appalachian geodynamics. , 2002, , .		34
81	U-Pb evidence for a polyorogenic evolution of the HP-HT units of the NW Iberian Massif. Contributions To Mineralogy and Petrology, 2002, 143, 236-253.	3.1	66
82	Prograde development of corona textures in metagabbros of the Sobrado unit (Ordenes Complex,) Tj ETQq0 0 0	rgBT /Over	ock 10 Tf 5
83	P–T Paths Derived from Garnet Growth Zoning in an Extensional Setting: an Example from the Tormes Gneiss Dome (Iberian Massif, Spain). Journal of Petrology, 2000, 41, 1489-1515.	2.8	61
84	Structural and kinematic analysis of the Corredoiras detachment: evidence for early Variscan synconvergent extension in the Ordenes Complex, NW Spain. International Journal of Earth Sciences, 1999, 88, 337-351.	1.8	30
85	Early Ordovician orogenic event in Galicia (NW Spain): evidence from $U\tilde{A}^{\sharp}\hat{A}\in \tilde{A}^{\sharp}$ Pb ages in the uppermost unit of the Ordenes Complex. Earth and Planetary Science Letters, 1999, 165, 213-228.	4.4	108
86	Tectonic Evolution of the Care \tilde{A}^3 n Ophiolite (Northwest Spain): A Remnant of Oceanic Lithosphere in the Variscan Belt. Journal of Geology, 1999, 107, 587-605.	1.4	101
87	Evolution métamorphique des métapélites du Massif hercynien des Rehamna (Maroc): implications tectonothermales. Journal of African Earth Sciences, 1998, 27, 87-106.	2.0	12
88	Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology, 1997, 25, 1103.	4.4	180
89	Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics, 1997, 277, 307-337.	2.2	256
90	P-T evolution of eclogites from the Agualada Unit (Ordenes Complex, northwest Iberian Massif, Spain): Implications for crustal subduction. Lithos, 1997, 40, 221-242.	1.4	57

#	Article	IF	CITATION
91	<i>Pâ€T</i> path determinations in the Tormes Gneissic Dome, NW Iberian Massif, Spain. Journal of Metamorphic Geology, 1997, 15, 645-663.	3.4	26
92	P-T path determinations in the Tormes Gneissic Dome, NW Iberian Massif, Spain. Journal of Metamorphic Geology, 1997, 15, 645-663.	3.4	3
93	Variscan exhumation of a subducted Paleozoic continental margin: The basal units of the Ordenes Complex, Galicia, NW Spain. Tectonics, 1996, 15, 106-121.	2.8	146
94	High-pressure micro-inclusions and development of an inverted metamorphic gradient in the Santiago Schists (Ordenes Complex, NW Iberian Massif, Spain): evidence of subduction and syncollisional decompression. Journal of Metamorphic Geology, 1995, 13, 141-164.	3.4	114
95	Tectonothermal evolution associated with Variscan crustal extension in the Tormes Gneiss Dome (NW Salamanca, Iberian Massif, Spain). Tectonophysics, 1994, 238, 117-138.	2.2	93
96	Opposite P, T, t paths of Hercynian metamorphism between the upper units of the Cabo Ortegal Complex and their substratum (northwest of the Iberian Massif). Tectonophysics, 1991, 191, 347-364.	2.2	38
97	Allochthonous Sequences., 1990,, 220-246.		55