List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333463/publications.pdf Version: 2024-02-01

		31949	20943
168	14,244	53	115
papers	citations	h-index	g-index
177	177	177	9591
all docs	docs citations	times ranked	citing authors

ADNOLD THEKED

#	Article	lF	CITATIONS
1	A global overview of developments of urban and rural household GHG footprints from 2005 to 2015. Science of the Total Environment, 2022, 806, 150695.	3.9	17
2	Early-stage assessment of minor metal recyclability. Resources, Conservation and Recycling, 2022, 176, 105881.	5.3	10
3	An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of the Total Environment, 2022, 803, 149892.	3.9	175
4	A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands. Applied Energy, 2022, 306, 118060.	5.1	25
5	Dietary change in high-income nations alone can lead to substantial double climate dividend. Nature Food, 2022, 3, 29-37.	6.2	70
6	Shared and environmentally just responsibility for global biodiversity loss. Ecological Economics, 2022, 194, 107339.	2.9	20
7	Different Material Footprint Trends between China and the World in 2007-2012 Explained by Construction- and Manufacturing-associated Investment. One Earth, 2022, 5, 109-119.	3.6	27
8	Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet. Energy, 2022, 245, 123339.	4.5	16
9	Biodiversity Loss from Freshwater Use for China's Electricity Generation. Environmental Science & Technology, 2022, 56, 3277-3287.	4.6	1
10	Material requirements for low-carbon energy technologies: A quantitative review. Renewable and Sustainable Energy Reviews, 2022, 161, 112334.	8.2	44
11	Assessing China's potential for reducing primary copper demand and associated environmental impacts in the context of energy transition and "Zero waste―policies. Waste Management, 2022, 144, 454-467.	3.7	10
12	How do carbon footprints from LCA and EEIOA databases compare? A comparison of ecoinvent and EXIOBASE. Journal of Industrial Ecology, 2022, 26, 1406-1422.	2.8	13
13	Global Human Consumption Threatens Key Biodiversity Areas. Environmental Science & Technology, 2022, 56, 9003-9014.	4.6	7
14	Future material requirements for global sustainable offshore wind energy development. Renewable and Sustainable Energy Reviews, 2022, 164, 112603.	8.2	17
15	Environmental Pressures and Value Added Related to Imports and Exports of the Dutch Agricultural Sector. Sustainability, 2022, 14, 6057.	1.6	4
16	The role of recycling in alleviating supply chain risk–Insights from a stock-flow perspective using a hybrid input-output database. Resources, Conservation and Recycling, 2022, 185, 106474.	5.3	5
17	Modeling the circular economy in environmentally extended input–output: A web application. Journal of Industrial Ecology, 2021, 25, 36-50.	2.8	10
18	Macroeconomic, social and environmental impacts of a circular economy up to 2050: A meta-analysis of prospective studies. Journal of Cleaner Production, 2021, 278, 123421.	4.6	81

#	Article	IF	CITATIONS
19	Environmental costs assessment for improved environmental-economic account for Indonesia. Journal of Cleaner Production, 2021, 280, 124521.	4.6	17
20	The environmental and material implications of circular transitions: A diffusion and productâ€life ycleâ€based modeling framework. Journal of Industrial Ecology, 2021, 25, 563-579.	2.8	9
21	Environmental life cycle costing at the early stage for supporting cost optimization of precast concrete panel for energy renovation of existing buildings. Journal of Building Engineering, 2021, 35, 102002.	1.6	9
22	The energy-water nexus of China's interprovincial and seasonal electric power transmission. Applied Energy, 2021, 286, 116493.	5.1	20
23	Circular business models of washing machines in the Netherlands: Material and climate change implications toward 2050. Sustainable Production and Consumption, 2021, 26, 1084-1098.	5.7	15
24	Global environmental and socioâ€economic impacts of a transition to a circular economy in metal and electrical products: A Dutch case study. Journal of Industrial Ecology, 2021, 25, 1264-1271.	2.8	6
25	Recycling potential in building energy renovation: A prospective study of the Dutch residential building stock up to 2050. Journal of Cleaner Production, 2021, 301, 126835.	4.6	18
26	The evolution and future perspectives of energy intensity in the global building sector 1971–2060. Journal of Cleaner Production, 2021, 305, 127098.	4.6	12
27	Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden. Renewable and Sustainable Energy Reviews, 2021, 145, 111077.	8.2	29
28	Global distribution of material inflows to inâ€use stocks in 2011 and its implications for a circularity transition. Journal of Industrial Ecology, 2021, 25, 1447-1461.	2.8	6
29	Environmental Cost in Indonesia Spillover Effect Between Consumption and Production. Frontiers in Sustainability, 2021, 2, .	1.3	1
30	The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resources Policy, 2021, 74, 102351.	4.2	17
31	Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nature Communications, 2021, 12, 6126.	5.8	92
32	When the Background Matters: Using Scenarios from Integrated Assessment Models in Prospective Life Cycle Assessment. Journal of Industrial Ecology, 2020, 24, 64-79.	2.8	134
33	Linking global crop and livestock consumption to local production hotspots. Global Food Security, 2020, 25, 100323.	4.0	23
34	Modeling the circular economy in environmentally extended input-output tables: Methods, software and case study. Resources, Conservation and Recycling, 2020, 152, 104508.	5.3	65
35	Beyond peak emission transfers: historical impacts of globalization and future impacts of climate policies on international emission transfers. Climate Policy, 2020, 20, S14-S27.	2.6	45
36	China's potential SO2 emissions from coal by 2050. Energy Policy, 2020, 147, 111856.	4.2	34

#	Article	IF	CITATIONS
37	A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation. Applied Energy, 2020, 280, 115953.	5.1	33
38	Assessing the future environmental impacts of copper production in China: Implications of the energy transition. Journal of Cleaner Production, 2020, 274, 122825.	4.6	58
39	Improving Subnational Input–Output Analyses Using Regional Trade Data: A Case-Study and Comparison. Environmental Science & Technology, 2020, 54, 12732-12741.	4.6	17
40	Future material demand for automotive lithium-based batteries. Communications Materials, 2020, 1, .	2.9	329
41	Scenarios for anthropogenic copper demand and supply in China: implications of a scrap import ban and a circular economy transition. Resources, Conservation and Recycling, 2020, 161, 104943.	5.3	32
42	A critical view on the current application of LCA for new technologies and recommendations for improved practice. Journal of Cleaner Production, 2020, 259, 120904.	4.6	151
43	Consumption-based carbon accounting: sense and sensibility. Climate Policy, 2020, 20, S1-S13.	2.6	54
44	Towards accepted procedures for calculating international consumption-based carbon accounts. Climate Policy, 2020, 20, S90-S106.	2.6	17
45	Life cycle greenhouse gas emission and cost analysis of prefabricated concrete building façade elements. Journal of Industrial Ecology, 2020, 24, 1016-1030.	2.8	33
46	Identifying supply risks by mapping the cobalt supply chain. Resources, Conservation and Recycling, 2020, 156, 104743.	5.3	133
47	Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands. Journal of Cleaner Production, 2020, 266, 121718.	4.6	73
48	Business Model Innovation for Resource-efficiency, Circularity and Cleaner Production: What 143 Cases Tell Us. Ecological Economics, 2019, 155, 20-35.	2.9	134
49	Evaluation and selection of functional diversity metrics with recommendations for their use in life cycle assessments. International Journal of Life Cycle Assessment, 2019, 24, 485-500.	2.2	14
50	Eco-efficiency assessment of technological innovations in high-grade concrete recycling. Resources, Conservation and Recycling, 2019, 149, 649-663.	5.3	67
51	Modeling copper demand in China up to 2050: A businessâ€∎sâ€usual scenario based on dynamic stock and flow analysis. Journal of Industrial Ecology, 2019, 23, 1363-1380.	2.8	56
52	The evolution of Chinese industrial CO2 emissions 2000–2050: A review and meta-analysis of historical drivers, projections and policy goals. Renewable and Sustainable Energy Reviews, 2019, 116, 109433.	8.2	31
53	Reply to: Soils need to be considered when assessing the impacts of land-use change on carbon sequestration. Nature Ecology and Evolution, 2019, 3, 1643-1644.	3.4	0
54	The second green revolution: Innovative urban agriculture's contribution to food security and sustainability – A review. Global Food Security, 2019, 22, 13-24.	4.0	160

#	Article	IF	CITATIONS
55	The circularity gap of nations: A multiregional analysis of waste generation, recovery, and stock depletion in 2011. Resources, Conservation and Recycling, 2019, 151, 104452.	5.3	30
56	Water use of electricity technologies: A global meta-analysis. Renewable and Sustainable Energy Reviews, 2019, 115, 109391.	8.2	96
57	Modeling reductions in the environmental footprints embodied in European Union's imports through source shifting. Ecological Economics, 2019, 164, 106300.	2.9	8
58	Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology and Evolution, 2019, 3, 628-637.	3.4	265
59	Approaches to responsible sourcing in mineral supply chains. Resources, Conservation and Recycling, 2019, 145, 389-398.	5.3	56
60	Global transport emissions in the Swedish carbon footprint. Journal of Cleaner Production, 2019, 226, 210-220.	4.6	28
61	BRIC and MINT countries' environmental impacts rising despite alleviative consumption patterns. Science of the Total Environment, 2019, 665, 52-60.	3.9	26
62	The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals. Energy Economics, 2019, 80, 512-523.	5.6	29
63	Quantifying environmental impacts of consumption: Implications for governance. , 2019, , 50-65.		0
64	Implementation Barriers for a System of Environmental-Economic Accounting in Developing Countries and Its Implications for Monitoring Sustainable Development Goals. Sustainability, 2019, 11, 6417.	1.6	15
65	Opportunity for a Dietary Win-Win-Win in Nutrition, Environment, and Animal Welfare. One Earth, 2019, 1, 349-360.	3.6	36
66	Life Cycle Assessment of Food Systems. One Earth, 2019, 1, 292-297.	3.6	83
67	Provincial and sector-level material footprints in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26484-26490.	3.3	60
68	Going Global to Local: Connecting Top-Down Accounting and Local Impacts, A Methodological Review of Spatially Explicit Input–Output Approaches. Environmental Science & Technology, 2019, 53, 1048-1062.	4.6	29
69	Future scenarios of variable renewable energies and flexibility requirements for thermal power plants in China. Energy, 2019, 167, 708-714.	4.5	37
70	Environmental responsibility for sulfur dioxide emissions and associated biodiversity loss across Chinese provinces. Environmental Pollution, 2019, 245, 898-908.	3.7	33
71	Advancing sustainable consumption and production in cities - AÂtransdisciplinary research and stakeholder engagement framework to address consumption-based emissions and impacts. Journal of Cleaner Production, 2019, 213, 114-125.	4.6	60
72	Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation and Recycling, 2019, 142, 101-112.	5.3	219

#	Article	IF	CITATIONS
73	Concepts Fostering Resource Efficiency: A Trade-off Between Ambitions and Viability. Ecological Economics, 2019, 155, 36-45.	2.9	12
74	EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multiâ€Regional Inputâ€Output Tables. Journal of Industrial Ecology, 2018, 22, 502-515.	2.8	514
75	Headline Environmental Indicators Revisited with the Global Multiâ€Regional Inputâ€Output Database EXIOBASE. Journal of Industrial Ecology, 2018, 22, 565-573.	2.8	23
76	Towards Robust, Authoritative Assessments of Environmental Impacts Embodied in Trade: Current State and Recommendations. Journal of Industrial Ecology, 2018, 22, 585-598.	2.8	68
77	Carbon overhead: The impact of the expansion in low-carbon electricity in China 2015–2040. Energy Policy, 2018, 119, 97-104.	4.2	26
78	Growth in Environmental Footprints and Environmental Impacts Embodied in Trade: Resource Efficiency Indicators from EXIOBASE3. Journal of Industrial Ecology, 2018, 22, 553-564.	2.8	147
79	Recent Progress in Assessment of Resource Efficiency and Environmental Impacts Embodied in Trade: An Introduction to this Special Issue. Journal of Industrial Ecology, 2018, 22, 489-501.	2.8	34
80	Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances. Environmental Science & Technology, 2018, 52, 4950-4959.	4.6	137
81	Resilience in the tantalum supply chain. Resources, Conservation and Recycling, 2018, 129, 56-69.	5.3	86
82	Metal supply constraints for a low-carbon economy?. Resources, Conservation and Recycling, 2018, 129, 202-208.	5.3	135
83	Deriving European Tantalum Flows Using Trade and Production Statistics. Journal of Industrial Ecology, 2018, 22, 166-179.	2.8	21
84	Assessing circularity interventions: a review of EEIOA-based studies. Journal of Economic Structures, 2018, 7, .	0.6	47
85	Trade-offs between social and environmental Sustainable Development Goals. Environmental Science and Policy, 2018, 90, 65-72.	2.4	167
86	Relevance of Global Multi Regional Input Output Databases for Global Environmental Policy: Experiences with EXIOBASE 3. Journal of Industrial Ecology, 2018, 22, 482-484.	2.8	17
87	The impact of the expansion in non-fossil electricity infrastructure on China's carbon emissions. Applied Energy, 2018, 228, 1994-2008.	5.1	23
88	The Virtual IELab – an exercise in replicating part of the EXIOBASE V.2 production pipeline in a virtual laboratory. Economic Systems Research, 2017, 29, 209-233.	1.2	6
89	The Global MRIO Lab – charting the world economy. Economic Systems Research, 2017, 29, 158-186.	1.2	74
90	Solid Waste and the Circular Economy: A Global Analysis of Waste Treatment and Waste Footprints. Journal of Industrial Ecology, 2017, 21, 628-640.	2.8	225

ARNOLD TUKKER

1

#	Article	IF	CITATIONS
91	Evaluating the environmental impacts of dietary recommendations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13412-13417.	3.3	199
92	The socioeconomic and environmental impacts of fossil fuels subsidies reduction and renewable energy expansion in China. , 2017, , 351-376.		0
93	Conclusions: steps towards more sustainable energy use in housing. , 2017, , 177-213.		0
94	Towards a Conceptual Framework for Social-Ecological Systems Integrating Biodiversity and Ecosystem Services with Resource Efficiency Indicators. Sustainability, 2016, 8, 201.	1.6	23
95	Environmental Impact Assessment of Household Consumption. Journal of Industrial Ecology, 2016, 20, 526-536.	2.8	489
96	Frontiers in Sustainable Consumption Research. Gaia, 2016, 25, 234-240.	0.3	29
97	Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results. Ecological Economics, 2016, 128, 177-186.	2.9	46
98	Ossified materialism: introduction to the special volume on absolute reductions in materials throughput and emissions. Journal of Cleaner Production, 2016, 132, 1-12.	4.6	58
99	Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars. Environmental Science & Technology, 2016, 50, 11366-11376.	4.6	16
100	A network approach for assembling and linking input–output models. Economic Systems Research, 2016, 28, 518-538.	1.2	21
101	Environmental and resource footprints in a global context: Europe's structural deficit in resource endowments. Global Environmental Change, 2016, 40, 171-181.	3.6	172
102	Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. Journal of Economic Structures, 2016, 5, .	0.6	54
103	Scenarios for a 2°C world: a trade-linked input–output model with high sector detail. Climate Policy, 2016, 16, 301-317.	2.6	46
104	A pseudo-statistical approach to treat choice uncertainty: the example of partitioning allocation methods. International Journal of Life Cycle Assessment, 2016, 21, 252-264.	2.2	28
105	Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecological Economics, 2015, 116, 289-299.	2.9	98
106	Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis. Sustainability, 2015, 7, 138-163.	1.6	321
107	Product services for a resource-efficient and circular economy – a review. Journal of Cleaner Production, 2015, 97, 76-91.	4.6	1,259

108 Priorities for sustainable consumption policies. , 2015, , .

7

#	Article	IF	CITATIONS
109	HARMONISING NATIONAL INPUT—OUTPUT TABLES FOR CONSUMPTION-BASED ACCOUNTING — EXPERIENC FROM EXIOPOL. Economic Systems Research, 2014, 26, 387-409.	ES _{1.2}	69
110	Rare Earth Elements Supply Restrictions: Market Failures, Not Scarcity, Hamper Their Current Use in High-Tech Applications. Environmental Science & Technology, 2014, 48, 9973-9974.	4.6	77
111	Price Corrected Domestic Technology Assumption—A Method To Assess Pollution Embodied in Trade Using Primary Official Statistics Only. With a Case on CO ₂ Emissions Embodied in Imports to Europe. Environmental Science & Technology, 2013, 47, 1775-1783.	4.6	38
112	Knowledge collaboration and learning for sustainable innovation and consumption: introduction to the ERSCP portion of this special volume. Journal of Cleaner Production, 2013, 48, 167-175.	4.6	64
113	â€~Knowledge Collaboration & Learning for Sustainable Innovation': an introduction to this special volume. Journal of Cleaner Production, 2013, 48, 1-2.	4.6	22
114	GLOBAL MULTIREGIONAL INPUT–OUTPUT FRAMEWORKS: AN INTRODUCTION AND OUTLOOK. Economic Systems Research, 2013, 25, 1-19.	1.2	402
115	Knowledge collaboration and learning by aligning global sustainability programs: reflections in the context of Rio+20. Journal of Cleaner Production, 2013, 48, 272-279.	4.6	23
116	Linkages of Sustainability, edited by Thomas E.Graedel and Estervan der Voet. Cambridge, MA, USA: The MIT Press, 2009, 430 pp., ISBN 9780262013581, cloth, \$40.00 Journal of Industrial Ecology, 2013, 17, 154-155.	2.8	0
117	EXIOPOL – DEVELOPMENT AND ILLUSTRATIVE ANALYSES OF A DETAILED GLOBAL MR EE SUT/IOT. Economic Systems Research, 2013, 25, 50-70.	1.2	304
118	Framing the role of design in transformation of consumption practices: beyond the designer-product-user triad. International Journal of Technology Management, 2013, 63, 70.	0.2	28
119	EXIOBASE: A Detailed Multi-regional Supply and Use Table with Environmental Extensions. Journal of Life Cycle Assessment Japan, 2013, 9, 84-90.	0.0	0
120	Chemical or feedstock recycling of WEEE products. , 2012, , 264-283.		1
121	Briefing: Implications of material security concern for waste management. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 2012, 165, 165-169.	0.9	2
122	Harmonizing Science and Policy Programs for a Decent and Sustainable Life for All by the Mid-Millennium. Journal of Industrial Ecology, 2011, 15, 652-654.	2.8	1
123	Do healthy diets in Europe matter to the environment? A quantitative analysis. Journal of Policy Modeling, 2011, 33, 8-28.	1.7	29
124	Environmental impacts of changes to healthier diets in Europe. Ecological Economics, 2011, 70, 1776-1788.	2.9	297
125	The Impacts of Household Consumption and Options for Change. Journal of Industrial Ecology, 2010, 14, 13-30.	2.8	189
126	<i>Sustainability by Design: A Subversive Strategy for Transforming Our Consumer Culture</i> by John R. Ehrenfeld. Journal of Industrial Ecology, 2010, 14, 173-174.	2.8	1

#	Article	IF	CITATIONS
127	Prosperity Without Growth: The Transition to a Sustainable Economy by Tim Jackson. Journal of Industrial Ecology, 2010, 14, 178-179.	2.8	6
128	Sustainable Consumption and Production. Journal of Industrial Ecology, 2010, 14, 1-3.	2.8	57
129	Towards a global multi-regional environmentally extended input–output database. Ecological Economics, 2009, 68, 1928-1937.	2.9	223
130	<i>Handbook of Inputâ€Output Economics in Industrial Ecology</i> edited by Sangwon Suh. Journal of Industrial Ecology, 2009, 13, 830-832.	2.8	3
131	Sustainable Consumption by Certification: The Case of Coffee. , 2009, , 179-199.		1
132	Fostering change to sustainable consumption and production: an evidence based view. Journal of Cleaner Production, 2008, 16, 1218-1225.	4.6	247
133	"The governance and practice of change of sustainable consumption and production.―Introduction to the ideas and recommendations presented in the articles in this special issue of the journal of cleaner Production, 2008, 16, 1143-1145.	4.6	27
134	The Oslo Declaration on Sustainable Consumption. Journal of Industrial Ecology, 2008, 10, 9-14.	2.8	41
135	Governance of sustainable transitions: about the 4(0) ways to change the world. Journal of Cleaner Production, 2007, 15, 94-103.	4.6	91
136	Imagining sustainability: the added value of transition scenarios in transition management. Foresight, 2006, 8, 15-30.	1.2	74
137	Risks to health and environment of the use of lead in products in the EU. Resources, Conservation and Recycling, 2006, 49, 89-109.	5.3	31
138	Identifying Priorities for Environmental Product Policy. Journal of Industrial Ecology, 2006, 10, 1-4.	2.8	54
139	Environmental Impacts of Products: A Detailed Review of Studies. Journal of Industrial Ecology, 2006, 10, 159-182.	2.8	378
140	Environmental Impacts of Products:Policy Relevant Information and Data Challenges. Journal of Industrial Ecology, 2006, 10, 183-198.	2.8	47
141	The Ecological Economics of Consumption, edited by Lucia Reisch and Inge Röpke. Journal of Industrial Ecology, 2006, 10, 200-202.	2.8	1
142	Product-services as a research field: past, present and future. Reflections from a decade of research. Journal of Cleaner Production, 2006, 14, 1552-1556.	4.6	731
143	Leapfrogging into the future: developing for sustainability. International Journal of Innovation and Sustainable Development, 2005, 1, 65.	0.3	41
144	Industrial Ecology and the Automotive Transport System Journal of Industrial Ecology, 2004, 8, 14-18.	2.8	15

#	Article	IF	CITATIONS
145	Eight types of product–service system: eight ways to sustainability? Experiences from SusProNet. Business Strategy and the Environment, 2004, 13, 246-260.	8.5	1,756
146	The Potential of CO2-reduction from Household Consumption by Product-service Systems – A Reflection from SusProNet. The Journal of Sustainable Product Design, 2003, 3, 109-118.	0.4	11
147	First EU network on sustainable product-service development launched. International Journal of Life Cycle Assessment, 2003, 8, 112-112.	2.2	1
148	The precautionary principle and epidemiology: a contradictio in terminis?. Journal of Epidemiology and Community Health, 2002, 56, 883-884.	2.0	6
149	Peer Reviewed: Life-cycle assessment and the precautionary principle. Environmental Science & Technology, 2002, 36, 70A-75A.	4.6	16
150	Risk Analysis, Life Cycle Assessment-The Common Challenge of Dealing with the Precautionary Frame (Based on the Toxicity Controversy in Sweden and the Netherlands). Risk Analysis, 2002, 22, 821-832.	1.5	30
151	Sustainable product design: Two major studies published on state of the art in the EU and dissemination to SMEs. International Journal of Life Cycle Assessment, 2001, 6, 250-250.	2.2	1
152	The Fourth Generation: New Strategies Call for New Eco-Indicators. Environmental Quality Management, 2001, 11, 51-61.	1.0	22
153	Title is missing!. The Journal of Sustainable Product Design, 2001, 1, 147-161.	0.4	71
154	Life cycle assessment as a tool in environmental impact assessment. Environmental Impact Assessment Review, 2000, 20, 435-456.	4.4	194
155	Philosophy of science, policy sciences and the basis of decision support with LCA Based on the toxicity controversy in Sweden and the Netherlands. International Journal of Life Cycle Assessment, 2000, 5, 177-186.	2.2	18
156	Life Cycle Assessments for Waste, Part III: The Case of Paint Packaging Separation and General Conclusions. International Journal of Life Cycle Assessment, 2000, 5, 105.	2.2	9
157	A comparison of thermal treatment processes for hazardous waste. International Journal of Life Cycle Assessment, 1999, 4, 341-351.	2.2	10
158	Life cycle assessments for waste, part I: Overview, methodology and scoping process. International Journal of Life Cycle Assessment, 1999, 4, 275-281.	2.2	13
159	Reply: Uncertainty in LCIA of toxic releases. International Journal of Life Cycle Assessment, 1999, 4, 63-64.	2.2	2
160	The MIIM LCA PH.D. club: Presentation and introduction. International Journal of Life Cycle Assessment, 1999, 4, 175-179.	2.2	3
161	Uncertainty in life cycle impact assessment of toxic releases practical experiences - arguments for a reductionalistic approach?. International Journal of Life Cycle Assessment, 1998, 3, 246.	2.2	19
162	Chlorine in the Netherlands, Part I, An Overview. Journal of Industrial Ecology, 1997, 1, 95-116.	2.8	27

#	Article	IF	CITATIONS
163	Chlorine in the Netherlands, Part II: Risk Management in Uncertainty for Chlorine. Journal of Industrial Ecology, 1997, 1, 91-110.	2.8	10
164	Combining SFA and LCA. Journal of Industrial Ecology, 1997, 1, 93-116.	2.8	29
165	Material suppliers and industrial metabolism. Environmental Science and Pollution Research, 1997, 4, 113-120.	2.7	8
166	A Concept for the Environmental Evaluation of Waste Management Benefits. Studies in Environmental Science, 1994, 60, 737-748.	0.0	3
167	State of the Art of Waste Characterization on European Level. Studies in Environmental Science, 1994, , 409-420.	0.0	1
168	Sustainable consumption and production (SCP) of food: overall conclusions on SCP in the food and agriculture domain. , 0, , 227-285.		1