Juan Jose Ripoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6333405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2419-2424.	3.3	197
2	microRNA regulation of fruit growth. Nature Plants, 2015, 1, 15036.	4.7	108
3	Common regulatory networks in leaf and fruit patterning revealed by mutations in the <i>Arabidopsis ASYMMETRIC LEAVES1</i> gene. Development (Cambridge), 2007, 134, 2663-2671.	1.2	107
4	A novel role for the floral homeotic gene <i>APETALA2</i> during <i>Arabidopsis</i> fruit development. Development (Cambridge), 2011, 138, 5167-5176.	1.2	102
5	The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics, 2017, 13, e1006726.	1.5	98
6	The <i><scp>WOX</scp>13</i> homeobox gene promotes replum formation in the <i>Arabidopsis thaliana</i> fruit. Plant Journal, 2013, 73, 37-49.	2.8	94
7	Mutations in the MicroRNA Complementarity Site of the INCURVATA4 Gene Perturb Meristem Function and Adaxialize Lateral Organs in Arabidopsis. Plant Physiology, 2006, 141, 607-619.	2.3	88
8	The class <scp>III</scp> peroxidase <scp>PRX</scp> 17 is a direct target of the <scp>MADS</scp> â€box transcription factor AGAMOUSâ€LIKE15 (<scp>AGL</scp> 15) and participates in lignified tissue formation. New Phytologist, 2017, 213, 250-263.	3.5	88
9	Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nature Biomedical Engineering, 2021, 5, 713-725.	11.6	77
10	Growth dynamics of the <i>Arabidopsis</i> fruit is mediated by cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25333-25342.	3.3	47
11	PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Developmental Biology, 2006, 289, 346-359.	0.9	41
12	Antagonistic interactions between Arabidopsis K-homology domain genes uncover PEPPER as a positive regulator of the central floral repressor FLOWERING LOCUS C. Developmental Biology, 2009, 333, 251-262.	0.9	41
13	Gibberellins negatively modulate ovule number in plants. Development (Cambridge), 2018, 145, .	1.2	41
14	Control of plant cell fate transitions by transcriptional and hormonal signals. ELife, 2017, 6, .	2.8	39
15	Antagonistic Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis of the Arabidopsis Fruit. PLoS Genetics, 2012, 8, e1003020.	1.5	38
16	A role for the gene regulatory module <i>microRNA172/TARGET OF EARLY ACTIVATION TAGGED 1/FLOWERING LOCUS T</i> (<i>mi<scp>RNA</scp>172/<scp>TOE</scp>1/<scp>FT</scp></i>) in the feeding sites induced by <i>Meloidogyne javanica</i> in <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 813-827	3.5	38
17	K-homology Nuclear Ribonucleoproteins Regulate Floral Organ Identity and Determinacy in Arabidopsis. PLoS Genetics, 2015, 11, e1004983.	1.5	35
18	Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain-of-function allele of the class III HD-Zip gene INCURVATA4. International Journal of Developmental Biology, 2008, 52, 953-961.	0.3	25

JUAN JOSE RIPOLL

#	Article	IF	CITATIONS
19	Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genetics, 2018, 14, e1007182.	1.5	17
20	Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing. CRISPR Journal, 2021, 4, 400-415.	1.4	5
21	Dissection of the Arabidopsis <i>HUAâ€PEP</i> gene activity reveals that ovule fate specification requires restriction of the floral Aâ€function. New Phytologist, 2020, 227, 1222-1234.	3.5	3
22	3� Rapid Amplification of cDNA Ends (3� RACE) Using Arabidopsis Samples. Bio-protocol, 2015, 5, e1604.	0.2	3