
## Andrzej I Stankiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332859/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Structure, Energy, Synergy, Time—The Fundamentals of Process Intensification. Industrial &<br>Engineering Chemistry Research, 2009, 48, 2465-2474.                                                                                                                   | 1.8 | 500       |
| 2  | A review of intensification of photocatalytic processes. Chemical Engineering and Processing: Process Intensification, 2007, 46, 781-789.                                                                                                                            | 1.8 | 387       |
| 3  | Membrane engineering in process intensification—An overview. Journal of Membrane Science, 2011,<br>380, 1-8.                                                                                                                                                         | 4.1 | 343       |
| 4  | Process intensification and process systems engineering: A friendly symbiosis. Computers and Chemical Engineering, 2008, 32, 3-11.                                                                                                                                   | 2.0 | 168       |
| 5  | Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chemical Engineering Journal, 2013, 217, 231-239.                                                                                                                                                    | 6.6 | 124       |
| 6  | A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Reviews in Chemical Engineering, 2014, 30, .                                                                                                       | 2.3 | 91        |
| 7  | On the effect of resonant microwave fields on temperature distribution in time and space.<br>International Journal of Heat and Mass Transfer, 2012, 55, 3800-3811.                                                                                                   | 2.5 | 87        |
| 8  | Intensified Reaction and Separation Systems. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 431-451.                                                                                                                                               | 3.3 | 78        |
| 9  | Microwaves and microreactors: Design challenges and remedies. Chemical Engineering Journal, 2014, 243, 147-158.                                                                                                                                                      | 6.6 | 73        |
| 10 | Microwave-activated methanol steam reforming for hydrogen production. International Journal of<br>Hydrogen Energy, 2011, 36, 12843-12852.                                                                                                                            | 3.8 | 67        |
| 11 | Synthesis, characterization, and application of ruthenium-doped SrTiO 3 perovskite catalysts for microwave-assisted methane dry reforming. Chemical Engineering and Processing: Process Intensification, 2018, 127, 178-190.                                         | 1.8 | 66        |
| 12 | On the accuracy and reproducibility of fiber optic (FO) and infrared (IR) temperature measurements of solid materials in microwave applications. Measurement Science and Technology, 2010, 21, 045108.                                                               | 1.4 | 63        |
| 13 | Crystal Nucleation by Laser-Induced Cavitation. Crystal Growth and Design, 2011, 11, 2311-2316.                                                                                                                                                                      | 1.4 | 62        |
| 14 | Complexity and Challenges in Noncontact High Temperature Measurements in Microwave-Assisted<br>Catalytic Reactors. Industrial & Engineering Chemistry Research, 2017, 56, 13379-13391.                                                                               | 1.8 | 62        |
| 15 | Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Applied Thermal Engineering, 2019, 155, 226-238.                                                                     | 3.0 | 58        |
| 16 | Process Intensification of Reactive Distillation for the Synthesis of <i>n</i> -Propyl Propionate: The<br>Effects of Microwave Radiation on Molecular Separation and Esterification Reaction. Industrial &<br>Engineering Chemistry Research, 2010, 49, 10287-10296. | 1.8 | 51        |
| 17 | Beyond electrolysis: old challenges and new concepts of electricity-driven chemical reactors.<br>Reaction Chemistry and Engineering, 2020, 5, 1005-1016.                                                                                                             | 1.9 | 51        |
| 18 | A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions. Chemical Engineering Journal, 2015, 264, 633-644.                                                          | 6.6 | 49        |

ANDRZEJ I STANKIEWICZ

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | On the parametric sensitivity of heat generation by resonant microwave fields in process fluids.<br>International Journal of Heat and Mass Transfer, 2013, 57, 375-388.                                                                  | 2.5 | 48        |
| 20 | Syngas production via microwave-assisted dry reforming of methane. Catalysis Today, 2021, 362, 72-80.                                                                                                                                    | 2.2 | 42        |
| 21 | Microwave Swing Regeneration vs Temperature Swing Regeneration—Comparison of Desorption<br>Kinetics. Industrial & Engineering Chemistry Research, 2011, 50, 8632-8644.                                                                   | 1.8 | 40        |
| 22 | Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their<br>Direct Use in the Development of an Innovative Microwave Reactor. Journal of the American Chemical<br>Society, 2017, 139, 5431-5436.   | 6.6 | 36        |
| 23 | Perspectives of Microwavesâ€Enhanced Heterogeneous Catalytic Gasâ€Phase Processes in Flow Systems.<br>Chemical Record, 2019, 19, 40-50.                                                                                                  | 2.9 | 35        |
| 24 | Rigid Body Dynamics Algorithm for Modeling Random Packing Structures of Nonspherical and<br>Nonconvex Pellets. Industrial & Engineering Chemistry Research, 2018, 57, 14988-15007.                                                       | 1.8 | 34        |
| 25 | On the Reliability of Sensitivity Test Methods for Submicrometer-Sized RDX and HMX Particles.<br>Propellants, Explosives, Pyrotechnics, 2013, 38, 761-769.                                                                               | 1.0 | 31        |
| 26 | <i>110th Anniversary:</i> The Missing Link Unearthed: Materials and Process Intensification. Industrial & amp; Engineering Chemistry Research, 2019, 58, 9212-9222.                                                                      | 1.8 | 29        |
| 27 | Process intensification education contributes to sustainable development goals. Part 2. Education for Chemical Engineers, 2020, 32, 15-24.                                                                                               | 2.8 | 28        |
| 28 | A systematic investigation of microwave-assisted reactive distillation: Influence of microwaves on separation and reaction. Chemical Engineering and Processing: Process Intensification, 2015, 93, 87-97.                               | 1.8 | 27        |
| 29 | Multiparameter Investigation of Laser-Induced Nucleation of Supersaturated Aqueous KCl Solutions.<br>Crystal Growth and Design, 2018, 18, 312-317.                                                                                       | 1.4 | 22        |
| 30 | Exploration of rectangular waveguides as a basis for microwave enhanced continuous flow chemistries. Chemical Engineering Science, 2013, 89, 196-205.                                                                                    | 1.9 | 20        |
| 31 | Coaxial traveling-wave microwave reactors: Design challenges and solutions. Chemical Engineering<br>Research and Design, 2020, 153, 677-683.                                                                                             | 2.7 | 20        |
| 32 | Microwave heating in heterogeneous catalysis: Modelling and design of rectangular traveling-wave microwave reactor. Chemical Engineering Science, 2021, 232, 116383.                                                                     | 1.9 | 17        |
| 33 | Novel microwave reactor equipment using internal transmission line (INTLI) for efficient liquid phase chemistries: A study-case of polyester preparation. Chemical Engineering and Processing: Process Intensification, 2013, 69, 83-89. | 1.8 | 15        |
| 34 | Modelâ€Based Optimization of a Photocatalytic Reactor with Lightâ€Emitting Diodes. Chemical<br>Engineering and Technology, 2016, 39, 1946-1954.                                                                                          | 0.9 | 12        |
| 35 | A two-step modelling approach for plasma reactors – experimental validation for CO2 dissociation in surface wave microwave plasma. Reaction Chemistry and Engineering, 2019, 4, 1253-1269.                                               | 1.9 | 11        |
| 36 | Catalyst Heating Characteristics in the Traveling-Wave Microwave Reactor. Catalysts, 2021, 11, 369.                                                                                                                                      | 1.6 | 8         |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Practical challenges in the energyâ€based control of molecular transformations in chemical reactors.<br>AICHE Journal, 2014, 60, 3392-3405.                                               | 1.8 | 6         |
| 38 | Reverse traveling microwave reactor – Modelling and design considerations. Chemical Engineering Science, 2021, 246, 116862.                                                               | 1.9 | 5         |
| 39 | The behavior and modelling of the vibrational-to-translational temperature ratio at long time scales in CO2 vibrational kinetics. Reaction Chemistry and Engineering, 2019, 4, 2108-2116. | 1.9 | 1         |
| 40 | Penrose triangles of the fossil-to-bio-based transition. Faraday Discussions, 2017, 202, 521-529.                                                                                         | 1.6 | 0         |
| 41 | 4.1 Membrane Crystallization Technology and Process Intensification. , 2017, , 1-7.                                                                                                       |     | 0         |