
Konstantin Kovler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cement and Concrete Research, 2001, 31, 1587-1591.	11.0	391
2	The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 2003, 33, 405-416.	11.0	239
3	Properties of fresh and hardened concrete. Cement and Concrete Research, 2011, 41, 775-792.	11.0	234
4	Effect of internal curing on durability-related properties of high performance concrete. Cement and Concrete Research, 2012, 42, 20-26.	11.0	208
5	Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?. Construction and Building Materials, 2012, 31, 226-230.	7.2	179
6	Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test. Materials and Structures/Materiaux Et Constructions, 2014, 47, 541-562.	3.1	175
7	Overview and Future Trends of Shrinkage Research. Materials and Structures/Materiaux Et Constructions, 2006, 39, 827-847.	3.1	164
8	Utilization of industrial by-products for the production of controlled low strength materials (CLSM). Waste Management, 2004, 24, 501-512.	7.4	122
9	Autogenous shrinkage and induced restraining stresses in high-strength concretes. Cement and Concrete Research, 2000, 30, 1701-1707.	11.0	108
10	Influence of cement paste matrix properties on the autogenous curing of high-performance concrete. Cement and Concrete Composites, 2004, 26, 499-507.	10.7	104
11	Radiological constraints of using building materials and industrial by-products in construction. Construction and Building Materials, 2009, 23, 246-253.	7.2	78
12	Influence of water to cement ratio on the efficiency of internal curing of high-performance concrete. Construction and Building Materials, 2017, 144, 311-316.	7.2	56
13	Revisiting the protected paste volume concept for internal curing of high-strength concretes. Cement and Concrete Research, 2011, 41, 981-986.	11.0	51
14	Does the utilization of coal fly ash in concrete construction present a radiation hazard?. Construction and Building Materials, 2012, 29, 158-166.	7.2	46
15	Measurement of water transport from saturated pumice aggregates to hardening cement paste. Materials and Structures/Materiaux Et Constructions, 2006, 39, 861-868.	3.1	44
16	Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage. Materials and Structures/Materiaux Et Constructions, 2002, 35, 97-101.	3.1	44
17	Effect of hybrid curing on cracking potential of high-performance concrete. Cement and Concrete Research, 2013, 54, 36-42.	11.0	42
18	Hydration kinetics of high-performance cementitious systems under different curing conditions. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1599-1611.	3.1	35

KONSTANTIN KOVLER

#	Article	IF	CITATIONS
19	Legislative aspects of radiation hazards from both gamma emitters and radon exhalation of concrete containing coal fly ash. Construction and Building Materials, 2011, 25, 3404-3409.	7.2	32
20	Assessment of behaviour and cracking susceptibility of cementitious systems under restrained conditions through ring tests: A critical review. Cement and Concrete Composites, 2019, 95, 137-153.	10.7	32
21	DETERMINATION OF THE RADON DIFFUSION LENGTH IN BUILDING MATERIALS USING ELECTRETS AND ACTIVATED CARBON. Health Physics, 2004, 86, 505-516.	0.5	30
22	Testing of concrete by rebound method: Leeb versus Schmidt hammers. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	28
23	Interdependence of Creep and Shrinkage for Concrete under Tension. Journal of Materials in Civil Engineering, 1995, 7, 96-101.	2.9	26
24	Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface. Journal of Environmental Radioactivity, 2016, 160, 28-35.	1.7	25
25	A New Look at the Problem of Drying Creep of Concrete under Tension. Journal of Materials in Civil Engineering, 1999, 11, 84-87.	2.9	23
26	Behavior and design of high-strength circular reinforced concrete columns subjected to axial compression. Engineering Structures, 2018, 173, 472-480.	5.3	23
27	The national survey of natural radioactivity in concrete produced in Israel. Journal of Environmental Radioactivity, 2017, 168, 46-53.	1.7	18
28	Enhancing Water Resistance of Cement and Gypsum-Cement Materials. Journal of Materials in Civil Engineering, 2001, 13, 349-355.	2.9	17
29	New method and installation for rapid determination of radon diffusion coefficient in various materials. Journal of Environmental Radioactivity, 2014, 130, 7-14.	1.7	16
30	Indoor radon regulation using tabulated values of temporal radon variation. Journal of Environmental Radioactivity, 2018, 183, 59-72.	1.7	16
31	Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site. Journal of Environmental Radioactivity, 2006, 86, 354-366.	1.7	14
32	Revisiting the concept for evaluation of radon protective properties of building insulation materials. Building and Environment, 2016, 95, 182-188.	6.9	13
33	Application of ultrasonic pulse velocity for assessment of thermal expansion coefficient of concrete at early age. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	13
34	Air change rates and radon accumulation in rooms with various levels of window and door closure. Journal of Building Physics, 2014, 38, 234-261.	2.4	12
35	The working mechanisms of low molecular weight polynaphthalene sulfonate superplasticizers. Construction and Building Materials, 2020, 240, 117891.	7.2	10
36	Pre-Soaked Lightweight Aggregates as Additives for Internal Curing of High-Strength Concretes. Cement, Concrete and Aggregates, 2004, 26, 1-8.	0.1	10

KONSTANTIN KOVLER

#	Article	IF	CITATIONS
37	Control of radon emanation at determination of activity concentration index for building materials. Construction and Building Materials, 2018, 160, 810-817.	7.2	9
38	Can scintillation detectors with low spectral resolution accurately determine radionuclides content of building materials?. Applied Radiation and Isotopes, 2013, 77, 76-83.	1.5	8
39	Studying temporal variations of indoor radon as a vital step towards rational and harmonized international regulation. Environmental Challenges, 2021, 4, 100204.	4.2	8
40	Performance of corrosion inhibitors in reinforced concrete elements under electrical voltage. Construction and Building Materials, 2022, 342, 127656.	7.2	8
41	Longitudinal restraining devices for the evaluation of structural behaviour of cementâ€based materials: The past, present and prospective trends. Strain, 2020, 56, e12343.	2.4	7
42	Measurements of radon exhalation rate for monitoring cement hydration. Materials and Structures/Materiaux Et Constructions, 2007, 40, 419-430.	3.1	6
43	Acoustic Emission Monitoring of High-Strength Concrete Columns Subjected to Compressive Axial Loading. Materials, 2020, 13, 3114.	2.9	5
44	Early age concrete––properties and performance. Cement and Concrete Composites, 2004, 26, 413-415.	10.7	4
45	Evaluation of the Thermal Expansion Coefficient Using Non-Destructive Testing. , 2015, , .		3
46	Smart Additives for Self-Curing Concrete. Materials Research Society Symposia Proceedings, 2012, 1488, 23.	0.1	1
47	Resistance of building foundation to radon penetration. Journal of Building Physics, 2020, 43, 456-473.	2.4	1
48	Determination of Mix Composition of Concrete Containing Fly Ash Using Gamma Spectrometry. Materials Research Society Symposia Proceedings, 2012, 1488, 121.	0.1	0
49	M&S highlight: Jensen and Hansen (1995), A dilatometer for measuring autogenous deformation in hardening Portland cement paste. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	0
50	M&S highlight: Kovler (1994), Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	0