

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332740/publications.pdf Version: 2024-02-01

RIN ZOU

#	Article	IF	CITATIONS
1	Cutting performance of silicon-based ceramic end milling tools in high-efficiency machining of GH4099 under dry condition. International Journal of Advanced Manufacturing Technology, 2022, 118, 1719-1732.	3.0	9
2	On-machine precision truing of ultrathin arc-shaped diamond wheels for grinding aspherical microstructure arrays. Precision Engineering, 2022, 73, 40-50.	3.4	10
3	Preparation of Mn–Zn ferrite ceramic using stereolithography 3D printing technology. Ceramics International, 2022, 48, 6923-6932.	4.8	12
4	Effect of MQL condition on cutting performance of high-speed machining of GH4099 with ceramic end mills. Tribology International, 2022, 167, 107401.	5.9	27
5	Rheological behavior and curing deformation of paste containing 85Âwt% Al2O3 ceramic during SLA-3D printing. Ceramics International, 2022, 48, 24560-24570.	4.8	26
6	Functionally graded polyetheretherketone-based composites additively manufactured by material extrusion using a transition interface design method. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106977.	7.6	17
7	Improvement of Heat Treatment Process on Mechanical Properties of FDM 3D-Printed Short- and Continuous-Fiber-Reinforced PEEK Composites. Coatings, 2022, 12, 827.	2.6	20
8	SLA-3d printing and compressive strength of PEGDA/nHAP biomaterials. Ceramics International, 2022, 48, 30917-30926.	4.8	15
9	Shear and Tensile Behaviors of Fiber-Reinforced Resin Matrix Composites Printed by the FDM Technology. Coatings, 2022, 12, 1000.	2.6	7
10	Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics, 2021, 34, 236-246.	5.3	147
11	Manufacturing of a ceramic groove part based on additive and subtractive technologies. Ceramics International, 2021, 47, 740-747.	4.8	12
12	Wear patterns and mechanisms of sialon ceramic end-milling tool during high speed machining of nickel-based superalloy. Ceramics International, 2021, 47, 5690-5698.	4.8	24
13	Assessment of cyclic utilization of coated cemented carbide inserts for turning of Inconel 718. International Journal of Advanced Manufacturing Technology, 2021, 112, 1583-1592.	3.0	0
14	Instantaneous milling force prediction and valuation of end milling based on friction angle in orthogonal cutting. International Journal of Advanced Manufacturing Technology, 2021, 116, 1341-1355.	3.0	5
15	3D printing and osteogenesis of loofah-like hydroxyapatite bone scaffolds. Ceramics International, 2021, 47, 20352-20361.	4.8	16
16	A study of a rapid method for detecting the machined surface roughness. International Journal of Advanced Manufacturing Technology, 2021, 117, 3115-3127.	3.0	8
17	A novel lattice structure topology optimization method with extreme anisotropic lattice properties. Journal of Computational Design and Engineering, 2021, 8, 1367-1390.	3.1	20
18	Geometric modeling and recycling of 3D printed fiber reinforced thermoplastic composite plain weft knitted structures. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106528.	7.6	11

Bin Zou

#	Article	IF	CITATIONS
19	The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceramics International, 2020, 46, 937-944.	4.8	114
20	Effect of particle size distribution on the preparation of ZTA ceramic paste applying for stereolithography 3D printing. Powder Technology, 2020, 359, 314-322.	4.2	95
21	Effect of the progressive tool wear on surface topography and chip formation in micro-milling of Ti–6Al–4V using Ti(C7N3)-based cermet micro-mill. Tribology International, 2020, 141, 105900.	5.9	87
22	Mechanical properties and microstructure of Al2O3-SiCw ceramic tool material toughened by Si3N4 particles. Ceramics International, 2020, 46, 8845-8852.	4.8	22
23	A comprehensive method for selecting cutting tool materials. International Journal of Advanced Manufacturing Technology, 2020, 110, 229-240.	3.0	22
24	Design and fabrication of graded cBN tool materials through high temperature high pressure method. Journal of Alloys and Compounds, 2020, 832, 154937.	5.5	8
25	Fabrication strategy of complicated Al2O3-Si3N4 functionally graded materials by stereolithography 3D printing. Journal of the European Ceramic Society, 2020, 40, 5797-5809.	5.7	65
26	Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Composites Part B: Engineering, 2020, 198, 108175.	12.0	164
27	Fabrication and characterization of SiC whiskers toughened Al2O3 paste for stereolithography 3D printing applications. Journal of Alloys and Compounds, 2020, 828, 154347.	5.5	51
28	A survey of design methods for material extrusion polymer 3D printing. Virtual and Physical Prototyping, 2020, 15, 148-162.	10.4	59
29	A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 327-335.	3.1	60
30	Modeling of surface roughness based on heat transfer considering diffusion among deposition filaments for FDM 3D printing heat-resistant resin. Applied Thermal Engineering, 2019, 161, 114064.	6.0	69
31	Edge micro-creation of Ti(C, N) cermet inserts by micro-abrasive blasting process and its tool performance. Machining Science and Technology, 2019, 23, 951-970.	2.5	8
32	Tool wear mechanisms and micro-channels quality in micro-machining of Ti-6Al-4V alloy using the Ti(C7N3)-based cermet micro-mills. Tribology International, 2019, 134, 60-76.	5.9	72
33	Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polymer Testing, 2019, 78, 105948.	4.8	199
34	Effect of printing strategies on forming accuracy and mechanical properties of ZrO2 parts fabricated by SLA technology. Ceramics International, 2019, 45, 17630-17637.	4.8	70
35	Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. Journal of Materials Processing Technology, 2019, 271, 62-74.	6.3	255
36	Feasibility study of the Ti(C7N3)-based cermet micro-mill based on dynamic fatigue behavior and modeling of the contact stress distribution on the round cutting edge. International Journal of Mechanical Sciences, 2019, 155, 143-158.	6.7	38

Bin Zou

#	Article	IF	CITATIONS
37	Wear mechanisms of Ti(C7N3)-based cermet micro-drill and machining quality during ultra-high speed micro-drilling multi-layered PCB consisting of copper foil and glass fiber reinforced plastics. Ceramics International, 2019, 45, 24578-24593.	4.8	21
38	Machined channel quality and tool life using cermet micro-mill in micro-milling aluminum alloy. International Journal of Advanced Manufacturing Technology, 2019, 101, 2205-2216.	3.0	14
39	A helical interpolation precision truing and error compensation for arc-shaped diamond grinding wheel. International Journal of Advanced Manufacturing Technology, 2019, 100, 167-177.	3.0	7
40	The micro-cutting performance of cermet and coated WC micro-mills in machining of TC4 alloy micro-grooves. International Journal of Advanced Manufacturing Technology, 2018, 96, 1403-1414.	3.0	19
41	Design and fabrication of gradient cermet composite cutting tool, andÂits cutting performance. Journal of Alloys and Compounds, 2018, 732, 25-31.	5.5	31
42	Analyzing the performance of self-developed cermet micro end mills in machining of TC4 alloy micro-grooves. Procedia CIRP, 2018, 71, 424-428.	1.9	7
43	Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technology, 2018, 338, 153-161.	4.2	99
44	Frictional behavior and wear resistance performance of gradient cermet composite tool materials sliding against hard materials. Ceramics International, 2017, 43, 7816-7826.	4.8	20
45	Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceramics International, 2017, 43, 16340-16347.	4.8	134
46	Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. Journal of Materials Processing Technology, 2017, 240, 12-22.	6.3	316
47	An experimental investigation of micro-machinability of aluminum alloy 2024 using Ti(C7N3)-based cermet micro end-mill tools. Journal of Materials Processing Technology, 2016, 235, 13-27.	6.3	30
48	Study on friction characterization and wear-resistance properties of Si3N4 ceramic sliding against different high-temperature alloys. Ceramics International, 2016, 42, 17210-17221.	4.8	45
49	Tool damage and machined-surface quality using hot-pressed sintering Ti(C7N3)/WC/TaC cermet cutting inserts for high-speed turning stainless steels. International Journal of Advanced Manufacturing Technology, 2015, 79, 197-210.	3.0	29
50	Study of a hot-pressed sintering preparation of Ti(C7N3)-based composite cermets materials and their performance as cutting tools. Journal of Alloys and Compounds, 2014, 611, 363-371.	5.5	28
51	Three-dimensional simulation of microstructure evolution for three-phase nano-composite ceramic tool materials. Computational Materials Science, 2012, 65, 254-263.	3.0	5
52	Three dimensional simulation of microstructure evolution for ceramic tool materials. Computational Materials Science, 2011, 50, 3334-3341.	3.0	8
53	Study on surface damages caused by turning NiCr20TiAl nickel-based alloy. Journal of Materials Processing Technology, 2009, 209, 5802-5809.	6.3	81
54	Monte Carlo simulation of microstructure evolution in nano-composite ceramic tool materials. Computational Materials Science, 2009, 47, 326-331.	3.0	18

BIN	- 7	~
BIN		
0.11		u u

#	Article	IF	CITATIONS
55	Three Dimensional Monte Carlo Simulation of Microstructure Evolution in Presence of Pores and Impurities for Three-Phase Nanocomposite Ceramic Tool Materials. Advanced Materials Research, 0, 500, 531-536.	0.3	0