Samson Y Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332548/publications.pdf

Version: 2024-02-01

933447 839539 1,072 19 10 18 citations h-index g-index papers 21 21 21 1392 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Enhancing SOFC cathode performance by surface modification through infiltration. Energy and Environmental Science, 2014, 7, 552.	30.8	680
2	Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime. Journal of Power Sources, 2016, 306, 162-170.	7.8	89
3	In Situ Probing of the Mechanisms of Coking Resistance on Catalyst-Modified Anodes for Solid Oxide Fuel Cells. Chemistry of Materials, 2015, 27, 822-828.	6.7	54
4	Hydrothermal synthesis of LiMn2O4 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes. Journal of Power Sources, 2014, 251, 411-416.	7.8	38
5	Evaluation of La0.4Ba0.6Fe0.8Zn0.2O3â^'Î'Â+ÂSm0.2Ce0.8O1.9 as a potential cobalt-free composite cathode for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2015, 275, 808-814.	7.8	32
6	Operando and Inâ€situ Xâ€ray Spectroscopies of Degradation in La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^'<i>δ</i>} Thin Film Cathodes in Fuel Cells. ChemSusChem, 2014, 7, 3078-3087.	6.8	30
7	A high-performance, cobalt-free cathode for intermediate-temperature solid oxide fuel cells with excellent CO2 tolerance. Journal of Power Sources, 2016, 319, 178-184.	7.8	30
8	Thermally sprayed high-performance porous metal-supported solid oxide fuel cells with nanostructured La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î´} cathodes. Journal of Materials Chemistry A, 2016, 4, 7461-7468.	10.3	25
9	Silicon Nanoparticle Ensembles for Lithium-Ion Batteries Elucidated by Small-Angle Neutron Scattering. ACS Applied Energy Materials, 2019, 2, 3220-3227.	5.1	24
10	Morphology engineering of silicon nanoparticles for better performance in Li-ion battery anodes. Nanoscale Advances, 2020, 2, 5335-5342.	4.6	21
11	Composites of Single/Double Perovskites as Cathodes for Solid Oxide Fuel Cells. Energy Technology, 2016, 4, 804-808.	3.8	11
12	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. Nano Letters, 2015, 15, 6047-6050.	9.1	10
13	Combinatorial Nanopowder Synthesis Along the ZnO–Al ₂ O ₃ Tie Line Using Liquidâ€Feed Flame Spray Pyrolysis. Journal of the American Ceramic Society, 2011, 94, 3308-3318.	3.8	8
14	Understanding the phase formation and compositions of barium carbonate modified NiO-yttria stabilized zirconia for fuel cell applications. International Journal of Hydrogen Energy, 2015, 40, 15597-15604.	7.1	7
15	In situ Raman spectroscopic analysis of the coking resistance mechanism on SrZr0.95Y0.05O3â^'x surface for solid oxide fuel cell anodes. Journal of Power Sources, 2016, 324, 282-287.	7.8	4
16	Collaboration and change in the research networks of five Energy Frontier Research Centers. Research Evaluation, 2016, , rvw006.	2.6	4
17	Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance. Energies, 2021, 14, 3010.	3.1	4
18	Synchrotron X-ray Based <i>Operando</i> Studies of Atomic and Electronic Structure in Batteries. Materials and Energy, 2015, , 79-108.	0.1	0

#	Article	IF	CITATIONS
19	Shock compression induced devitrification of amorphous Ce3Al melt-spun ribbons. AIP Conference Proceedings, 2017, , .	0.4	0