Felix F Loeffler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332521/publications.pdf

Version: 2024-02-01

58	737	14	22
papers	citations	h-index	g-index
64	64	64	965
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development and Experimental Assessment of a Model for the Material Deposition by Laser-Induced Forward Transfer. Applied Sciences (Switzerland), 2022, 12, 1361.	1.3	2
2	Trained laser-patterned carbon as high-performance mechanical sensors. Npj Flexible Electronics, 2022, 6, .	5.1	5
3	Nanolayer Laser Absorber for Femtoliter Chemistry in Polymer Reactors. Advanced Materials, 2022, 34, e2108493.	11.1	11
4	Assessing Polymer-Surface Adhesion with a Polymer Collection. Langmuir, 2022, , .	1.6	3
5	Automated Laserâ€Transfer Synthesis of Highâ€Density Microarrays for Infectious Disease Screening. Advanced Materials, 2022, 34, e2200359.	11.1	11
6	Sustainable Cathodes for Lithiumâ€lon Energy Storage Devices Based on Tannic Acidâ€"Toward Ecofriendly Energy Storage. Advanced Sustainable Systems, 2021, 5, 2000206.	2.7	10
7	Alkanes as Intelligent Surface Thermometers: A Facile Approach to Characterize Shortâ€Lived Temperature Gradients on the Micrometer Scale. Advanced Materials Interfaces, 2021, 8, 2001626.	1.9	8
8	Longitudinal Development of Antibody Responses in COVID-19 Patients of Different Severity with ELISA, Peptide, and Glycan Arrays: An Immunological Case Series. Pathogens, 2021, 10, 438.	1.2	21
9	Laser-driven growth of structurally defined transition metal oxide nanocrystals on carbon nitride photoelectrodes in milliseconds. Nature Communications, 2021, 12, 3224.	5.8	15
10	Identification of a Zika NS2B epitope as a biomarker for severe clinical phenotypes. RSC Medicinal Chemistry, 2021, 12, 1525-1539.	1.7	2
11	Automated glycan assembly of peptidoglycan backbone fragments. Organic and Biomolecular Chemistry, 2021, 19, 9829-9832.	1.5	3
12	Probing Multivalent Carbohydrate-Protein Interactions With On-Chip Synthesized Glycopeptides Using Different Functionalized Surfaces. Frontiers in Chemistry, 2021, 9, 766932.	1.8	6
13	Position Matters: Fluorescent Positional Isomers for Reliable Multichannel Encryption Devices. Chemistry - A European Journal, 2021, 27, 16098-16102.	1.7	6
14	Laser-induced forward transfer of soft material nanolayers with millisecond pulses shows contact-based material deposition. Applied Surface Science, 2020, 508, 144973.	3.1	13
15	Ultrasonicâ€Assisted Synthesis of Highly Defined Silver Nanodimers by Selfâ€Assembly for Improved Surfaceâ€Enhanced Raman Spectroscopy. Chemistry - A European Journal, 2020, 26, 1243-1248.	1.7	6
16	Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. Journal of Proteome Research, 2020, 19, 4339-4354.	1.8	23
17	Epitopes of Naturally Acquired and Vaccineâ€Induced Antiâ€Ebola Virus Glycoprotein Antibodies in Single Amino Acid Resolution. Biotechnology Journal, 2020, 15, 2000069.	1.8	9
18	Onâ€Chip Neoâ€Glycopeptide Synthesis for Multivalent Glycan Presentation. Chemistry - A European Journal, 2020, 26, 9954-9963.	1.7	18

#	Article	IF	CITATIONS
19	Using Carbon Laser Patterning to Produce Flexible, Metal-Free Humidity Sensors. ACS Applied Electronic Materials, 2020, 2, 4146-4154.	2.0	9
20	Multivalent glycan arrays. Faraday Discussions, 2019, 219, 9-32.	1.6	26
21	A Lowâ€Cost Laserâ€Based Nanoâ€3D Polymer Printer for Rapid Surface Patterning and Chemical Synthesis of Peptide and Glycan Microarrays. Advanced Materials Technologies, 2019, 4, 1900503.	3.0	13
22	Spatial Modes of Laser-Induced Mass Transfer in Micro-Gaps. Applied Sciences (Switzerland), 2019, 9, 1303.	1.3	1
23	Elastic reversible valves on centrifugal microfluidic platforms. Lab on A Chip, 2019, 19, 1090-1100.	3.1	25
24	Microarray Synthesizer: A Lowâ€Cost Laserâ€Based Nanoâ€3D Polymer Printer for Rapid Surface Patterning and Chemical Synthesis of Peptide and Glycan Microarrays (Adv. Mater. Technol. 11/2019). Advanced Materials Technologies, 2019, 4, 1970062.	3.0	1
25	Combinatorial Synthesis of Peptoid Arrays via Laserâ€Based Stacking of Multiple Polymer Nanolayers. Macromolecular Rapid Communications, 2019, 40, 1800533.	2.0	14
26	High-density Peptide Arrays Help to Identify Linear Immunogenic B-cell Epitopes in Individuals Naturally Exposed to Malaria Infection. Molecular and Cellular Proteomics, 2019, 18, 642-656.	2.5	29
27	Automated laser-assisted synthesis of microarrays for infectious disease research. , 2019, , .		3
28	A Trifunctional Linker for Purified 3D Assembled Peptide Structure Arrays. Small Methods, 2018, 2, 1700205.	4.6	5
29	Development of Neutralizing and Non-neutralizing Antibodies Targeting Known and Novel Epitopes of TcdB of Clostridioides difficile. Frontiers in Microbiology, 2018, 9, 2908.	1.5	18
30	Combinatorial Synthesis of Macromolecular Arrays by Microchannel Cantilever Spotting ($\hat{A}\mu CS$). Advanced Materials, 2018, 30, e1801632.	11.1	31
31	Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays. Journal of Immunological Methods, 2017, 443, 45-54.	0.6	45
32	Combinatorial Particle Patterning. Advanced Functional Materials, 2017, 27, 1703511.	7.8	11
33	Identification of a Tetanus Toxin Specific Epitope in Single Amino Acid Resolution. Biotechnology Journal, 2017, 12, 1700197.	1.8	11
34	Antibody fingerprints in lyme disease deciphered with high density peptide arrays. Engineering in Life Sciences, 2017, 17, 1078-1087.	2.0	20
35	Mapping Putative B-Cell Zika Virus NS1 Epitopes Provides Molecular Basis for Anti-NS1 Antibody Discrimination between Zika and Dengue Viruses. ACS Omega, 2017, 2, 3913-3920.	1.6	41
36	Replication of Polymerâ€Based Peptide Microarrays by Multiâ€Step Transfer. ChemNanoMat, 2016, 2, 897-903.	1.5	3

#	Article	IF	CITATIONS
37	High-Density Peptide Arrays for Malaria Vaccine Development. Methods in Molecular Biology, 2016, 1403, 569-582.	0.4	9
38	Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer. Applied Surface Science, 2016, 389, 942-951.	3.1	2
39	Selective Functionalization of Microstructured Surfaces by Laserâ€Assisted Particle Transfer. Advanced Functional Materials, 2016, 26, 7067-7073.	7.8	6
40	High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material. Nature Communications, 2016, 7, 11844.	5.8	49
41	Solid-material-based coupling efficiency analyzed with time-of-flight secondary ion mass spectrometry. Applied Surface Science, 2016, 360, 306-314.	3.1	5
42	Highâ€Density Peptide Arrays with Combinatorial Laser Fusing. Advanced Materials, 2014, 26, 3730-3734.	11.1	19
43	Particle-Based Microarrays of Oligonucleotides and Oligopeptides. Microarrays (Basel, Switzerland), 2014, 3, 245-262.	1.4	11
44	Printing Peptide Arrays with a Complementary Metal Oxide Semiconductor Chip. Advances in Biochemical Engineering/Biotechnology, 2013, 137, 1-23.	0.6	7
45	Purification of Highâ€Complexity Peptide Microarrays by Spatially Resolved Array Transfer to Goldâ€Coated Membranes. Advanced Materials, 2013, 25, 1598-1602.	11.1	12
46	Sensing Immune Responses with Customized Peptide Microarrays. Biointerphases, 2012, 7, 47.	0.6	16
47	Biomolecule Arrays Using Functional Combinatorial Particle Patterning on Microchips. Advanced Functional Materials, 2012, 22, 2503-2508.	7.8	14
48	Alternative Setups for Automated Peptide Synthesis. Mini-Reviews in Organic Chemistry, 2011, 8, 121-131.	0.6	7
49	Microparticle transfer onto pixel electrodes of 45 $\hat{l}^1/4$ m pitch on HV-CMOS chips $\hat{a}\in$ "Simulation and experiment. Sensors and Actuators A: Physical, 2011, 172, 533-545.	2.0	4
50	High-Precision Combinatorial Deposition of Micro Particle Patterns on a Microelectronic Chip. Aerosol Science and Technology, 2011, 45, 65-74.	1.5	15
51	Programmable high voltage CMOS chips for particle-based high-density combinatorial peptide synthesis. Sensors and Actuators B: Chemical, 2010, 147, 418-427.	4.0	15
52	Characterization of triboelectrically charged particles deposited on dielectric surfaces. Journal Physics D: Applied Physics, 2010, 43, 165301.	1.3	6
53	Quality analysis of selective microparticle deposition on electrically programmable surfaces. Review of Scientific Instruments, 2010, 81, 073703.	0.6	4
54	Peptide Arrays with a Chip. Methods in Molecular Biology, 2010, 669, 109-124.	0.4	8

FELIX F LOEFFLER

#	Article	IF	CITATIONS
55	Measurement of triboelectric charging of moving micro particles by means of an inductive cylindrical probe. Journal Physics D: Applied Physics, 2007, 40, 6115-6120.	1.3	11
56	Noncontact charge measurement of moving microparticles contacting dielectric surfaces. Review of Scientific Instruments, 2007, 78, 075111.	0.6	8
57	Biofunctional Xerography. , 0, , .		0
58	Image Processing Quality Analysis for Particle Based Peptide Array Production on a Microchip. , 0, , .		0