Tobias Kretzschmar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332430/publications.pdf

Version: 2024-02-01

40 papers 3,188 citations

279487 23 h-index 276539 41 g-index

45 all docs

45 docs citations

45 times ranked

4648 citing authors

#	Article	IF	Citations
1	Genome-Wide Association Reveals Trait Loci for Seed Glucosinolate Accumulation in Indian Mustard (Brassica juncea L.). Plants, 2022, 11, 364.	1.6	8
2	Predicting tea tree oil distillate composition using portable spectrometric technology. Journal of Raman Spectroscopy, 2022, 53, 771-784.	1.2	3
3	Simultaneous Quantification of 17 Cannabinoids in Cannabis Inflorescence by Liquid Chromatography-Mass Spectrometry. Separations, 2022, 9, 85.	1.1	5
4	A One-Step Grafting Methodology Can Adjust Stem Morphology and Increase THCA Yield in Medicinal Cannabis. Agronomy, 2022, 12, 852.	1.3	3
5	Characterization of the Cannabis sativa glandular trichome proteome. PLoS ONE, 2021, 16, e0242633.	1.1	25
6	Drought response QTLs in a Super Basmati × Azucena population by highâ€density GBSâ€based SNP linkage mapping. Plant Breeding, 2021, 140, 758-774.	1.0	7
7	An extreme-phenotype genomeâ€wide association study identifies candidate cannabinoid pathway genes in Cannabis. Scientific Reports, 2020, 10, 18643.	1.6	17
8	An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies. PLoS ONE, 2020, 15, e0232479.	1.1	51
9	The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Frontiers in Genetics, 2020, 11, 229.	1.1	108
10	Complex Patterns of Cannabinoid Alkyl Side-Chain Inheritance in Cannabis. Scientific Reports, 2019, 9, 11421.	1.6	14
11	Methodology: ssb-MASS: a single seed-based sampling strategy for marker-assisted selection in rice. Plant Methods, 2019, 15, 78.	1.9	14
12	1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. Rice, 2019, 12, 55.	1.7	46
13	Exploring the genetic diversity within traditional Philippine pigmented Rice. Rice, 2019, 12, 27.	1.7	12
14	Variation in seed longevity among diverse Indica rice varieties. Annals of Botany, 2019, 124, 447-460.	1.4	45
15	Rice Galaxy: an open resource for plant science. GigaScience, 2019, 8, .	3.3	11
16	DNA fingerprinting at farm level maps rice biodiversity across Bangladesh and reveals regional varietal preferences. Scientific Reports, 2018, 8, 14920.	1.6	20
17	Transcriptional response of rice flag leaves to restricted external phosphorus supply during grain filling in rice cv. IR64. PLoS ONE, 2018, 13, e0203654.	1.1	7
18	Association mapping in rice: basic concepts and perspectives for molecular breeding. Plant Production Science, 2018, 21, 159-176.	0.9	28

#	Article	IF	CITATIONS
19	Genomeâ€wide association and gene validation studies for early root vigour to improve direct seeding of rice. Plant, Cell and Environment, 2018, 41, 2731-2743.	2.8	35
20	Phosphorus remobilization from rice flag leaves during grain filling: an <scp>RNA</scp> â€seq study. Plant Biotechnology Journal, 2017, 15, 15-26.	4.1	55
21	Genome-wide Association Analysis Tracks Bacterial Leaf Blight Resistance Loci In Rice Diverse Germplasm. Rice, 2017, 10, 8.	1.7	49
22	Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis. Theoretical and Applied Genetics, 2017, 130, 1903-1914.	1.8	16
23	CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports, 2017, 36, 745-757.	2.8	170
24	Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 1. Phenology. Journal of Experimental Botany, 2017, 68, 4369-4388.	2.4	16
25	Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 2. Thermal stress and spikelet sterility. Journal of Experimental Botany, 2017, 68, 4389-4406.	2.4	26
26	Large-scale deployment of a rice 6ÂK SNP array for genetics and breeding applications. Rice, 2017, 10, 40.	1.7	97
27	Can natural variation in grain P concentrations be exploited in rice breeding to lower fertilizer requirements?. PLoS ONE, 2017, 12, e0179484.	1.1	10
28	The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta, 2016, 243, 1351-1360.	1.6	57
29	From promise to application: root traits for enhanced nutrient capture in rice breeding. Journal of Experimental Botany, 2016, 67, 3605-3615.	2.4	79
30	Phosphorus uptake, partitioning and redistribution during grain filling in rice. Annals of Botany, 2016, 118, 1151-1162.	1.4	50
31	<i>Petunia hybrida</i> PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes. Plant, Cell and Environment, 2016, 39, 2725-2739.	2.8	34
32	The knowns and unknowns of phosphorus loading into grains, and implications for phosphorus efficiency in cropping systems. Journal of Experimental Botany, 2016, 67, 1221-1229.	2.4	51
33	A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants, 2015, 1, 15124.	4.7	263
34	Unmasking Novel Loci for Internal Phosphorus Utilization Efficiency in Rice Germplasm through Genome-Wide Association Analysis. PLoS ONE, 2015, 10, e0124215.	1.1	83
35	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483, 341-344.	13.7	502
36	Plant ABC Transporters. The Arabidopsis Book, 2011, 9, e0153.	0.5	401

3

#	Article	IF	CITATIONS
37	Functions of ABC transporters in plants. Essays in Biochemistry, 2011, 50, 145-160.	2.1	110
38	Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 2010, 64, 1002-1017.	2.8	354
39	Plasma membrane H ⁺ â€ATPaseâ€dependent citrate exudation from cluster roots of phosphateâ€deficient white lupin. Plant, Cell and Environment, 2009, 32, 465-475.	2.8	99
40	Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast. Plant Physiology, 2005, 137, 901-910.	2.3	168