Crystal L Mackall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633199/publications.pdf Version: 2024-02-01

COVSTALL MACKALL

#	Article	IF	CITATIONS
1	T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, The, 2015, 385, 517-528.	13.7	2,476
2	Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 2014, 124, 188-195.	1.4	2,080
3	4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 2015, 21, 581-590.	30.7	1,304
4	CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nature Medicine, 2018, 24, 20-28.	30.7	1,030
5	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
6	Neuroblastoma. Nature Reviews Disease Primers, 2016, 2, 16078.	30.5	907
7	Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discovery, 2018, 8, 1219-1226.	9.4	661
8	Disruption of CXCR2-Mediated MDSC Tumor Trafficking Enhances Anti-PD1 Efficacy. Science Translational Medicine, 2014, 6, 237ra67.	12.4	579
9	The Many Faces of IL-7: From Lymphopoiesis to Peripheral T Cell Maintenance. Journal of Immunology, 2005, 174, 6571-6576.	0.8	509
10	Harnessing the biology of IL-7 for therapeutic application. Nature Reviews Immunology, 2011, 11, 330-342.	22.7	490
11	c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 2019, 576, 293-300.	27.8	480
12	Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood, 2013, 121, 1165-1174.	1.4	478
13	Clinical lessons learned from the first leg of the CAR T cell journey. Nature Medicine, 2019, 25, 1341-1355.	30.7	400
14	CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clinical Cancer Research, 2019, 25, 2560-2574.	7.0	369
15	GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 2022, 603, 934-941.	27.8	339
16	CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nature Communications, 2016, 7, 12320.	12.8	325
17	Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nature Medicine, 2018, 24, 572-579.	30.7	321
18	Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 c259T Cells in Synovial Sarcoma. Cancer Discovery, 2018, 8, 944-957.	9.4	313

#	Article	IF	CITATIONS
19	Constraints on CD4 Recovery Postchemotherapy in Adults: Thymic Insufficiency and Apoptotic Decline of Expanded Peripheral CD4 Cells. Blood, 1997, 90, 3789-3798.	1.4	300
20	Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 2021, 372, .	12.6	297
21	Tuning the Antigen Density Requirement for CAR T-cell Activity. Cancer Discovery, 2020, 10, 702-723.	9.4	296
22	CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. Journal of Clinical Oncology, 2020, 38, 1938-1950.	1.6	273
23	CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nature Medicine, 2021, 27, 1419-1431.	30.7	273
24	Programming CAR-T cells to kill cancer. Nature Biomedical Engineering, 2018, 2, 377-391.	22.5	267
25	Tumor Antigen and Receptor Densities Regulate Efficacy of a Chimeric Antigen Receptor Targeting Anaplastic Lymphoma Kinase. Molecular Therapy, 2017, 25, 2189-2201.	8.2	264
26	Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas. Cancer Immunology Research, 2016, 4, 869-880.	3.4	258
27	Phase I Clinical Trial of Ipilimumab in Pediatric Patients with Advanced Solid Tumors. Clinical Cancer Research, 2016, 22, 1364-1370.	7.0	251
28	The Emerging Landscape of Immune Cell Therapies. Cell, 2020, 181, 46-62.	28.9	247
29	Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immmunotherapy. Immunological Reviews, 1997, 157, 61-72.	6.0	218
30	Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): a multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncology, The, 2020, 21, 541-550.	10.7	202
31	Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell–depleted stem cell transplantation. Blood, 2015, 125, 784-792.	1.4	200
32	T-Cell Immunodeficiency Following Cytotoxic Antineoplastic Therapy: A Review. Stem Cells, 2000, 18, 10-18.	3.2	182
33	Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. Journal of Clinical Oncology, 2021, 39, 1650-1659.	1.6	173
34	Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nature Medicine, 2020, 26, 712-719.	30.7	172
35	Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma. Cancer Cell, 2017, 32, 295-309.e12.	16.8	148
36	CAR T cell therapy: inroads to response and resistance. Nature Reviews Immunology, 2019, 19, 73-74.	22.7	148

#	Article	IF	CITATIONS
37	Pharmacologic control of CAR-T cell function using dasatinib. Blood Advances, 2019, 3, 711-717.	5.2	143
38	A Pilot Study of Consolidative Immunotherapy in Patients with High-Risk Pediatric Sarcomas. Clinical Cancer Research, 2008, 14, 4850-4858.	7.0	142
39	Assessment of programmed deathâ€ligand 1 expression and tumorâ€associated immune cells in pediatric cancer tissues. Cancer, 2017, 123, 3807-3815.	4.1	135
40	Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nature Methods, 2020, 17, 852-860.	19.0	123
41	Harnessing the Immunotherapy Revolution for the Treatment of Childhood Cancers. Cancer Cell, 2017, 31, 476-485.	16.8	116
42	Clinical Trial Designs for the Early Clinical Development of Therapeutic Cancer Vaccines. Journal of Clinical Oncology, 2001, 19, 1848-1854.	1.6	113
43	Autologous lymphapheresis for the production of chimeric antigen receptor TÂcells. Transfusion, 2017, 57, 1133-1141.	1.6	110
44	Adjuvant Immunotherapy to Improve Outcome in High-Risk Pediatric Sarcomas. Clinical Cancer Research, 2016, 22, 3182-3191.	7.0	109
45	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	30.7	105
46	Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy, 2016, 18, 893-901.	0.7	104
47	Systemic and local immunity following adoptive transfer of NY-ESO-1 SPEAR T cells in synovial sarcoma. , 2019, 7, 276.		101
48	Long-Term Outcomes Following CD19 CAR T Cell Therapy for B-ALL Are Superior in Patients Receiving a Fludarabine/Cyclophosphamide Preparative Regimen and Post-CAR Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 218-218.	1.4	98
49	Immune reconstitution and infectious complications following axicabtagene ciloleucel therapy for large B-cell lymphoma. Blood Advances, 2021, 5, 143-155.	5.2	92
50	Focus on sarcomas. Cancer Cell, 2002, 2, 175-178.	16.8	89
51	Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	28.9	88
52	Immune-based therapies for childhood cancer. Nature Reviews Clinical Oncology, 2014, 11, 693-703.	27.6	84
53	Global analysis of shared TÂcell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity, 2021, 54, 586-602.e8.	14.3	80
54	Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Science Advances, 2022, 8, eabn8264.	10.3	80

#	Article	IF	CITATIONS
55	Disease Burden Affects Outcomes in Pediatric and Young Adult B-Cell Lymphoblastic Leukemia After Commercial Tisagenlecleucel: A Pediatric Real-World Chimeric Antigen Receptor Consortium Report. Journal of Clinical Oncology, 2022, 40, 945-955.	1.6	79
56	Monitoring of Circulating Tumor DNA Improves Early Relapse Detection After Axicabtagene Ciloleucel Infusion in Large B-Cell Lymphoma: Results of a Prospective Multi-Institutional Trial. Journal of Clinical Oncology, 2021, 39, 3034-3043.	1.6	76
57	Driving CAR T cell translation forward. Science Translational Medicine, 2019, 11, .	12.4	61
58	GPC2-CAR TÂcells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell, 2022, 40, 53-69.e9.	16.8	60
59	Immune receptor inhibition through enforced phosphatase recruitment. Nature, 2020, 586, 779-784.	27.8	59
60	Harnessing the physiology of lymphopenia to support adoptive immunotherapy in lymphoreplete hosts. Blood, 2009, 114, 3831-3840.	1.4	58
61	Impact of cytokine release syndrome on cardiac function following CD19 CAR-T cell therapy in children and young adults with hematological malignancies. , 2020, 8, e001159.		55
62	Fludarabine and neurotoxicity in engineered T-cell therapy. Gene Therapy, 2018, 25, 176-191.	4.5	54
63	Molecular Imaging of Chimeric Antigen Receptor T Cells by ICOS-ImmunoPET. Clinical Cancer Research, 2021, 27, 1058-1068.	7.0	53
64	CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR–refractory large B-cell lymphoma. Blood, 2021, 137, 2321-2325.	1.4	51
65	Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy. Blood Advances, 2022, 6, 1961-1968.	5.2	47
66	Intravital imaging reveals synergistic effect of CAR T-cells and radiation therapy in a preclinical immunocompetent glioblastoma model. OncoImmunology, 2020, 9, 1757360.	4.6	46
67	Phase I Experience with a Bi-Specific CAR Targeting CD19 and CD22 in Adults with B-Cell Malignancies. Blood, 2018, 132, 490-490.	1.4	43
68	Induction of Immune Response after Allogeneic Wilms' Tumor 1 Dendritic Cell Vaccination and Donor Lymphocyte Infusion in Patients with Hematologic Malignancies and Post-Transplantation Relapse. Biology of Blood and Marrow Transplantation, 2016, 22, 2149-2154.	2.0	42
69	Phase I Trial Using CD19/CD22 Bispecific CAR T Cells in Pediatric and Adult Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 744-744.	1.4	42
70	Phase 1 Study of CD19/CD22 Bispecific Chimeric Antigen Receptor (CAR) Therapy in Children and Young Adults with B Cell Acute Lymphoblastic Leukemia (ALL). Blood, 2018, 132, 898-898.	1.4	40
71	Frontiers in cancer immunotherapy—a symposium report. Annals of the New York Academy of Sciences, 2021, 1489, 30-47.	3.8	39
72	Current state of pediatric sarcoma biology and opportunities for future discovery: A report from the sarcoma translational research workshop. Cancer Genetics, 2016, 209, 182-194.	0.4	38

#	Article	IF	CITATIONS
73	NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discovery, 2021, 2, 648-665.	5.0	37
74	T-Cell Immunodeficiency Following Cytotoxic Antineoplastic Therapy: A Review. Oncologist, 1999, 4, 370-378.	3.7	37
75	Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
76	Safety and Response of Incorporating CD19 Chimeric Antigen Receptor T Cell Therapy in Typical Salvage Regimens for Children and Young Adults with Acute Lymphoblastic Leukemia. Blood, 2015, 126, 684-684.	1.4	35
77	Minimal Residual Disease Negative Complete Remissions Following Anti-CD22 Chimeric Antigen Receptor (CAR) in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood, 2016, 128, 650-650.	1.4	34
78	Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: a Pediatric Real World CAR Consortium Report. Blood Advances, 2022, 6, 600-610.	5.2	32
79	CD58 Aberrations Limit Durable Responses to CD19 CAR in Large B Cell Lymphoma Patients Treated with Axicabtagene Ciloleucel but Can be Overcome through Novel CAR Engineering. Blood, 2020, 136, 53-54.	1.4	28
80	ADVL1412: Initial results of a phase I/II study of nivolumab and ipilimumab in pediatric patients with relapsed/refractory solid tumors—A COG study Journal of Clinical Oncology, 2017, 35, 10526-10526.	1.6	26
81	PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Research, 2020, 80, 4731-4740.	0.9	24
82	Infectious complications of CAR T-cell therapy across novel antigen targets in the first 30 days. Blood Advances, 2021, 5, 5312-5322.	5.2	24
83	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	2.8	24
84	Impact of Two Measures of Micrometastatic Disease on Clinical Outcomes in Patients with Newly Diagnosed Ewing Sarcoma: A Report from the Children's Oncology Group. Clinical Cancer Research, 2016, 22, 3643-3650.	7.0	23
85	Allogeneic CAR Invariant Natural Killer T Cells Exert Potent Antitumor Effects through Host CD8 T-Cell Cross-Priming. Clinical Cancer Research, 2021, 27, 6054-6064.	7.0	23
86	Tocilizumab-Refractory Cytokine Release Syndrome (CRS) Triggered By Chimeric Antigen Receptor (CAR)-Transduced T Cells May Have Distinct Cytokine Profiles Compared to Typical CRS. Blood, 2016, 128, 3358-3358.	1.4	22
87	Neurotoxicity Associated with a High-Affinity GD2 CAR—Letter. Cancer Immunology Research, 2018, 6, 494-495.	3.4	21
88	Clinical Activity and Persistence of Anti-CD22 Chimeric Antigen Receptor in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood, 2015, 126, 1324-1324.	1.4	21
89	Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. , 2022, 10, e004483.		21
90	Open label, non-randomized, multi-cohort pilot study of genetically engineered NY-ESO-1 specific NY-ESO-1 ^{c259} t in HLA-A2 ⁺ patients with synovial sarcoma (NCT01343043) Journal of Clinical Oncology, 2017, 35, 3000-3000.	1.6	20

#	Article	IF	CITATIONS
91	A Fructo-Oligosaccharide Prebiotic Is Well Tolerated in Adults Undergoing Allogeneic Hematopoietic Stem Cell Transplantation: A Phase I Dose-Escalation Trial. Transplantation and Cellular Therapy, 2021, 27, 932.e1-932.e11.	1.2	18
92	Bioinformatic Description of Immunotherapy Targets for Pediatric T-Cell Leukemia and the Impact of Normal Gene Sets Used for Comparison. Frontiers in Oncology, 2014, 4, 134.	2.8	13
93	Circulating DNA for Molecular Response Prediction, Characterization of Resistance Mechanisms and Quantification of CAR T-Cells during Axicabtagene Ciloleucel Therapy. Blood, 2019, 134, 550-550.	1.4	13
94	Detectable Circulating Tumor DNA 28 Days after the CD19 CAR T-Cell Therapy, Axicabtagene Ciloleucel, Is Associated with Poor Outcomes in Patients with Diffuse Large B-Cell Lymphoma. Blood, 2019, 134, 884-884.	1.4	13
95	A phase 1, open-label, dose escalation study of enoblituzumab (MGA271) in pediatric patients with B7-H3-expressing relapsed or refractory solid tumors Journal of Clinical Oncology, 2017, 35, TPS2596-TPS2596.	1.6	13
96	Neurotoxicity following CD19/CD28ζ CAR T-cells in children and young adults with B-cell malignancies. Neuro-Oncology, 2022, 24, 1584-1597.	1.2	12
97	Engineering a designer immunotherapy. Science, 2018, 359, 990-991.	12.6	11
98	Disease detection methodologies in relapsed B ell acute lymphoblastic leukemia: Opportunities for improvement. Pediatric Blood and Cancer, 2020, 67, e28149.	1.5	11
99	Target Antigen Downregulation and Other Mechanisms of Failure after Axicabtagene Ciloleucel (CAR19) Therapy. Blood, 2018, 132, 4656-4656.	1.4	11
100	Low CD19 Antigen Density Diminishes Efficacy of CD19 CAR T Cells and Can be Overcome By Rational Redesign of CAR Signaling Domains. Blood, 2018, 132, 963-963.	1.4	10
101	A Prospective Evaluation of Neurocognitive Function and Neurologic Symptoms in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL) Undergoing Anti-CD22 Chimeric Antigen Receptor Therapy. Blood, 2016, 128, 1625-1625.	1.4	10
102	Real-World Treatment of Pediatric Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia Using Tisagenlecleucel That Is out of Specification for Commercial Release. Blood, 2020, 136, 42-44.	1.4	8
103	Factors Impacting Overall and Event-Free Survival following Post-Chimeric Antigen Receptor T Cell Consolidative Hematopoietic Stem Cell Transplantation. Transplantation and Cellular Therapy, 2022, 28, 31.e1-31.e9.	1.2	8
104	Elevated Serum Interleukin-7 Levels Precede the Development of Acute Graft-Versus-Host Disease Blood, 2007, 110, 1064-1064.	1.4	8
105	Immune-Based Approaches for the Treatment of Pediatric Malignancies. Annual Review of Cancer Biology, 2020, 4, 353-370.	4.5	7
106	Abstract CT031: GD2 CAR T cells mediate clinical activity and manageable toxicity in children and young adults with DIPG and H3K27M-mutated diffuse midline gliomas. , 2021, , .		7
107	EPCT-14. GD2 CAR T-CELLS MEDIATE CLINICAL ACTIVITY AND MANAGEABLE TOXICITY IN CHILDREN AND YOUNG ADULTS WITH H3K27M-MUTATED DIPG AND SPINAL CORD DMG. Neuro-Oncology, 2021, 23, i49-i50.	1.2	6
108	Infectious Complications Associated with CAR T-Cell Therapy. Blood, 2019, 134, 4449-4449.	1.4	6

#	Article	IF	CITATIONS
109	Out-of-specification tisagenlecleucel does not compromise safety or efficacy in pediatric acute lymphoblastic leukemia. Blood, 2021, 138, 2138-2142.	1.4	5
110	Monitoring ctDNA in r/r DLBCL patients following the CAR T-cell therapy axicabtagene ciloleucel: Day 28 landmark analysis Journal of Clinical Oncology, 2019, 37, 7552-7552.	1.6	5
111	Gene editing to enhance the efficacy of cancer cell therapies. Molecular Therapy, 2021, 29, 3153-3162.	8.2	5
112	Allogeneic Chimeric Antigen Receptor-Invariant Natural Killer T Cells Exert Both Direct and Indirect Antitumor Effects through Host CD8 T Cell Cross-Priming. Blood, 2019, 134, 867-867.	1.4	5
113	Elevated Axicabtagene Ciloleucel (CAR-19) Expansion By Immunophenotyping Is Associated with Toxicity in Diffuse Large B-Cell Lymphoma. Blood, 2018, 132, 576-576.	1.4	4
114	CD22-CAR T-Cell Therapy Mediates High Durable Remission Rates in Adults with Large B-Cell Lymphoma Who Have Relapsed after CD19-CAR T-Cell Therapy. Blood, 2021, 138, 741-741.	1.4	4
115	Bleeding and Thrombosis Are Associated with Endothelial Dysfunction in CAR-T Cell Therapy and Are Increased in Patients Experiencing Neurologic Toxicity. Blood, 2020, 136, 32-33.	1.4	4
116	Targeting pediatric malignancies for T cell-mediated immune responses. Current Oncology Reports, 2000, 2, 539-546.	4.0	3
117	Profiling T-Cell Receptor Diversity and Dynamics during Lymphoma Immunotherapy Using Cell-Free DNA (cfDNA). Blood, 2020, 136, 49-50.	1.4	3
118	Identification of dual positive CD19+/CD3+ T cells in a leukapheresis product undergoing CAR transduction: a case report. , 2020, 8, e001073.		2
119	Emerging Immunotherapies for Cancer and Their Potential for Application in Pediatric Oncology. Critical Reviews in Oncogenesis, 2015, 20, 315-327.	0.4	2
120	Synthetic Chimeric Antigen Receptors (CARs) Rapidly Induce Exhaustion and Augmented Glycolytic Metabolism In Human T Cells and Implicate Persistent CD28 Signaling As a Driver Of Exhaustion In Human T Cells. Blood, 2013, 122, 192-192.	1.4	2
121	Abstract 61: Transient "rest" reinvigorates exhausted CAR T cells via epigenetic remodeling. , 2021, , .		1
122	Myeloid Cells in Peripheral Blood Mononuclear Cell (PMBC) Concentrates Inhibit the Expansion of Chimeric Antigen Receptor (CAR) T Cells. Blood, 2015, 126, 383-383.	1.4	1
123	Phase II study of epacadostat with pembrolizumab in metastatic or unresectable gastroesophageal junction and gastric adenocarcinoma requiring paired biopsies Journal of Clinical Oncology, 2018, 36, TPS191-TPS191.	1.6	1
124	Abstract CT142: GD2.Ox40.CD28.z CAR T cell trial in neuroblastoma and osteosarcoma. Cancer Research, 2022, 82, CT142-CT142.	0.9	1
125	Effectiveness of chemotherapy in non-rhabdomyosarcoma soft tissue sarcomas-response. Pediatric Blood and Cancer, 2005, 45, 228-228.	1.5	0
126	Reply to "ls IL-7 from dendritic cells essential for the homeostasis of CD4+ T cells?― Nature Immunology, 2010, 11, 548-548.	14.5	0

#	Article	IF	CITATIONS
127	Chimeric Antigen Receptors for Cancer: Progress and Challenges. Current Stem Cell Reports, 2015, 1, 187-196.	1.6	0
128	Interleukin-7 Over-Expression Regulates T Cell Versus B Cell Lineage Development in the Thymus Blood, 2004, 104, 3238-3238.	1.4	0
129	Two Categories of Biologic Effects Induced by IL-7 on Human T Cells Blood, 2005, 106, 3303-3303.	1.4	0
130	Evaluation of the CD8+ Tumor Associated vs. Non-Tumor Associated Immune Repertoire in Cancer Patients Following Induction of Lymphopenia and Following CD3/4-1BB Based Expansion Blood, 2005, 106, 2390-2390.	1.4	0
131	Non-Myeloablative Allogeneic Hematopoietic Stem Cell Transplantation (SCT) with Pre-Transplant Targeted Immune Depletion Results in Rapid Full Donor Engraftment in Pediatric Patients with Malignancy Blood, 2005, 106, 3672-3672.	1.4	0
132	Subclinical GVHD Impairs Responses to Dendritic Cell Vaccines Following Allogeneic Transplantation Blood, 2005, 106, 571-571.	1.4	0
133	Early Recovery of Thymus-Derived Nail̀`ve T Cells in Pediatric Patients (pts) Treated with Non-Myeloablative Allogeneic Peripheral Blood Stem Cell Transplantation (NMSCT) for Cancer Blood, 2006, 108, 310-310.	1.4	0
134	GVHD Abrogates T Cell Responses to Dendritic Cell Vaccines but Not Vaccine-Induced Proliferation Blood, 2007, 110, 1802-1802.	1.4	0
135	Loss of IFNÎ ³ R1 Signaling on Donor Bone Marrow Abrogates GVHD but Maintains Immunocompetence Blood, 2007, 110, 2180-2180.	1.4	0
136	Interleukin-7 Produced by Antigen Presenting Cells Regulates the Homeostatic Peripheral Expansion of Naive CD4 T Cells Blood, 2007, 110, 1333-1333.	1.4	0
137	Depletion of CD25+ T cells and ILâ€7 administration enhanced antiâ€ŧumor effects in mice with B16 melanoma. FASEB Journal, 2008, 22, 1077.15.	0.5	0
138	The T Cell Receptor As An Oncogene: Thymic Expression Of Self-Reactive T Cell Receptors Targeting Survivin Induces T-Cell Lymphoblastic Leukmia. Blood, 2013, 122, 167-167.	1.4	0
139	Latest in Clinical Application of CAR Cell Therapy for B-cell Malignancy and Transplantation. Blood, 2015, 126, SCI-24-SCI-24.	1.4	0
140	Identification of Dual Positive CD19+/CD3+ T Cells in an Apheresis Product Undergoing Chimeric Antigen Receptor (CAR) Transduction. Blood, 2019, 134, 4471-4471.	1.4	0
141	Shared Expression of CD93 and Other Antigens By AML and Endothelial Cells Highlights a Need for Rational Combinatorial Targeting. Blood, 2020, 136, 22-22.	1.4	0
142	YIA22-001: Development of hKIT Chimeric Antigen Receptor T-Cells as Dual Hematopoietic Stem Cell Transplantation Conditioning and Immunotherapeutic Agents for Cure of Pediatric Acute Myeloid Leukemia. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, YIA22-001.	4.9	0
143	Outcomes of Hispanic and non-Hispanic white pediatric and young adult patients with B-cell acute lymphoblastic leukemia after commercial tisagenlecleucel Journal of Clinical Oncology, 2022, 40, 10016-10016.	1.6	0