Gregory I Giles

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6331478/gregory-i-giles-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46 3,191 25 54 h-index g-index citations papers 3,456 5.02 54 4.9 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
46	Quadruply Stranded Metallo-Supramolecular Helicate [Pd(hextrz)] Acts as a Molecular Mimic of Cytolytic Peptides. <i>Chemical Research in Toxicology</i> , 2020 , 33, 1822-1834	4	4
45	Controlled Delivery of Nitric Oxide for Cancer Therapy. <i>Pharmaceutical Nanotechnology</i> , 2019 , 7, 279-3	303 ₄	28
44	Synthesis, Characterisation and Antimicrobial Studies of some 2,6-bis(1,2,3-Triazol-4-yl)Pyridine Ruthenium(II) [click[Complexes. Asian Journal of Organic Chemistry, 2019, 8, 496-505]	3	9
43	Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability. <i>Free Radical Biology and Medicine</i> , 2019 , 130, 297-305	7.8	5
42	Data characterizing the biophysical and nitric oxide release properties of the tDodSNO - Styrene maleic anhydride nanoparticle SMA-tDodSNO. <i>Data in Brief</i> , 2018 , 21, 1771-1775	1.2	3
41	Anticancer Activity and Cisplatin Binding Ability of -Quinoline and -Isoquinoline Derived [PdL] Metallosupramolecular Cages. <i>Frontiers in Chemistry</i> , 2018 , 6, 563	5	23
40	Redox activated polymeric nanoparticles in tumor therapy 2017 , 327-354		1
39	The Reactive Sulfur Species Concept: 15 Years On. <i>Antioxidants</i> , 2017 , 6,	7.1	48
38	The design of redox active thiol peroxidase mimics: Dihydrolipoic acid recognition correlates with cytotoxicity and prooxidant action. <i>Biochemical Pharmacology</i> , 2016 , 104, 19-28	6	4
37	Palladium(II) and platinum(II) complexes of ((2-pyridyl)pyrazol-1-ylmethyl)benzoic acids: Synthesis, Solid state characterisation and biological cytotoxicity. <i>Inorganica Chimica Acta</i> , 2016 , 446, 41-53	2.7	8
36	Hypoxia Responsive Drug Delivery Systems in Tumor Therapy. <i>Current Pharmaceutical Design</i> , 2016 , 22, 2808-20	3.3	20
35	Enhanced kinetic stability of [Pd2L4](4+) cages through ligand substitution. <i>Dalton Transactions</i> , 2016 , 45, 8050-60	4.3	44
34	Data on the catalytic mechanism of thiol peroxidase mimics. <i>Data in Brief</i> , 2016 , 8, 207-10	1.2	
33	A Dinuclear Platinum(II) N4Py Complex: An Unexpected Coordination Mode For N4Py. <i>Inorganic Chemistry</i> , 2015 , 54, 6671-3	5.1	17
32	Biologically active [Pd2L4](4+) quadruply-stranded helicates: stability and cytotoxicity. <i>Dalton Transactions</i> , 2015 , 44, 11129-36	4.3	72
31	The design of nitric oxide donor drugs: s-nitrosothiol tDodSNO is a superior photoactivated donor in comparison to GSNO and SNAP. <i>European Journal of Pharmacology</i> , 2014 , 737, 168-76	5.3	14
30	Intracellular targeting and pharmacological activity of the superoxide dismutase mimics MnTE-2-PyP5+ and MnTnHex-2-PyP5+ regulated by their porphyrin ring substituents. <i>Inorganic Chemistry</i> , 2013 , 52, 4121-3	5.1	24

(2003-2012)

The molecular design of S-nitrosothiols as photodynamic agents for controlled nitric oxide release. <i>Chemical Biology and Drug Design</i> , 2012 , 80, 471-8	2.9	15
Reduced metal ion concentrations in atherosclerotic plaques from subjects with type 2 diabetes mellitus. <i>Atherosclerosis</i> , 2012 , 222, 512-8	3.1	9
A hydrogen peroxide electrode assay to measure thiol peroxidase activity for organoselenium and organotellurium drugs. <i>Analytical Biochemistry</i> , 2012 , 429, 103-7	3.1	13
Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen. <i>Journal of Biological Inorganic Chemistry</i> , 2012 , 17, 589-98	3.7	15
Novel method for measuring S-nitrosothiols using hydrogen sulfide. <i>Methods in Enzymology</i> , 2008 , 441, 161-72	1.7	24
Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 11562-7	11.5	159
Moderate hypoxia induces xanthine oxidoreductase activity in arterial endothelial cells. <i>Free Radical Biology and Medicine</i> , 2006 , 40, 952-9	7.8	64
The redox regulation of thiol dependent signaling pathways in cancer. <i>Current Pharmaceutical Design</i> , 2006 , 12, 4427-43	3.3	158
Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. <i>Cancer Research</i> , 2006 , 66, 2257-63	10.1	75
Multifunctional redox catalysts as selective enhancers of oxidative stress. <i>Organic and Biomolecular Chemistry</i> , 2005 , 3, 2579-87	3.9	45
Solid phase synthesis of anthraquinone peptides and their evaluation as topoisomerase I inhibitors. <i>Journal of Peptide Science</i> , 2005 , 11, 417-23	2.1	9
Topoisomerase enzymes as therapeutic targets for cancer chemotherapy. <i>Medicinal Chemistry</i> , 2005 , 1, 383-94	1.8	69
Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. <i>Journal of Biological Chemistry</i> , 2005 , 280, 19289-97	5.4	145
Reactive sulphur species in oxidative signal transduction. <i>Biochemical Society Transactions</i> , 2004 , 32, 1015-7	5.1	30
A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell, 2004, 16, 157	5-1818 6	87
Targeting oxidative stress-related diseases: organochalcogen catalysts as redox sensitizers. <i>Biochemical Pharmacology</i> , 2003 , 66, 2021-8	6	22
Schwefel und Selen: Bedeutung der Oxidationsstufe fli Struktur und Funktion von Proteinen. <i>Angewandte Chemie</i> , 2003 , 115, 4890-4907	3.6	70
Sulfur and selenium: the role of oxidation state in protein structure and function. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 4742-58	16.4	606
	Reduced metal ion concentrations in atherosclerotic plaques from subjects with type 2 diabetes mellitus. Atherosclerosis, 2012, 222, 512-8 A hydrogen peroxide electrode assay to measure thiol peroxidase activity for organoselenium and organotellurium drugs. Analytical Biochemistry, 2012, 429, 103-7 Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen. Journal of Biological Inorganic Chemistry, 2012, 17, 589-98 Novel method for measuring S-nitrosothiols using hydrogen sulfide. Methods in Enzymology, 2008, 4411, 161-72 Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-45] cluster and is essential for nutrient starvation survival. Proceedings of the National Academy of Sciences of the United States of America, 2001, 104, 11562-7 Moderate hypoxia induces xanthine oxidoreductase activity in arterial endothelial cells. Free Radical Biology and Medicine, 2006, 40, 952-9 The redox regulation of thiol dependent signaling pathways in cancer. Current Pharmaceutical Design, 2006, 12, 4427-43 Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Research, 2006, 66, 2257-63 Multifunctional redox catalysts as selective enhancers of oxidative stress. Organic and Biomolecular Chemistry, 2005, 3, 2579-87 Solid phase synthesis of anthraquinone peptides and their evaluation as topoisomerase I inhibitors. Journal of Peptide Science, 2005, 11, 417-23 Topoisomerase enzymes as therapeutic targets for cancer chemotherapy. Medicinal Chemistry, 2005, 1, 383-94 Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. Journal of Biological Chemistry, 2005, 280, 19289-97 Reactive sulphur species in oxidative signal transduction. Biochemical Society Transactions, 2004, 32, 1015-7 A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell, 2004, 16, 157 Targeting oxidative stress-related diseases: organochalco	Reduced metal ion concentrations in atherosclerotic plaques from subjects with type 2 diabetes mellitus. Atherosclerosis, 2012, 222, 512-8 A hydrogen peroxide electrode assay to measure thiol peroxidase activity for organoselenium and organotellurium drugs. Analytical Biochemistry, 2012, 429, 103-7 Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen. Journal of Biological Inorganic Chemistry, 2012, 17, 589-98 Novel method for measuring 5-nitrosothiols using hydrogen sulfide. Methods in Enzymology, 2008, 441, 161-72 Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and is essential for nutrients starvation survival. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11562-7 Moderate hypoxia induces xanthine oxidoreductase activity in arterial endothelial cells. Free Radical Biology and Medicine, 2006, 40, 952-9 The redox regulation of thiol dependent signaling pathways in cancer. Current Pharmaceutical Design, 2006, 12, 4427-43 Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Research, 2006, 60, 2257-63 Multifunctional redox catalysts as selective enhancers of oxidative stress. Organic and Biomolecular Chemistry, 2005, 3, 2579-87 Solid phase synthesis of anthraquinone peptides and their evaluation as topoisomerase I inhibitors. Journal of Peptide Science, 2005, 11, 417-23 Topoisomerase enzymes as therapeutic targets for cancer chemotherapy. Medicinal Chemistry, 2005, 1, 383-94 Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. Journal of Biological Chemistry, 2005, 280, 19289-97 A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell, 2004, 16, 1575-886 Targeting oxidative stress-related diseases: organochalcogen catalysts as redox sensitizers. Biochemical Pharmacology, 2003, 66, 2021-8 Schwefel und Selen: Bedeut

1:	Metal and redox modulation of cysteine protein function. <i>Chemistry and Biology</i> , 2003 , 10, 677-93		336	
10	Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 4317-22	3.9	73	
9	Redox catalysts as sensitisers towards oxidative stress. <i>FEBS Letters</i> , 2003 , 535, 179-82	3.8	47	
8	Multiple roles of cysteine in biocatalysis. <i>Biochemical and Biophysical Research Communications</i> , 2003 , 300, 1-4	3.4	171	
7	Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. <i>Biochemical and Biophysical Research Communications</i> , 2003 , 300, 719-24	3.4	72	
6	Electrochemical, in vitro and cell culture analysis of integrated redox catalysts: implications for cancer therapy. <i>Chemical Communications</i> , 2003 , 2030-1	5.8	28	
5	Reactive sulphur species: an in vitro investigation of the oxidation properties of disulphide S-oxides. <i>Biochemical Journal</i> , 2002 , 364, 579-85	3.8	62	
4	Reactive sulfur species: an emerging concept in oxidative stress. <i>Biological Chemistry</i> , 2002 , 383, 375-88	4.5	218	
3	Hypothesis: the role of reactive sulfur species in oxidative stress. <i>Free Radical Biology and Medicine</i> , 2001 , 31, 1279-83	7.8	206	
2	Electrochemistry of chalcogen compounds: prediction of antioxidant activity. <i>Chemical Communications</i> , 2001 , 2490-1	5.8	33	
1	Redox-Controlled Transcription Factors and Gene Expression245-270		4	