Angus K T Wann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6331394/publications.pdf

Version: 2024-02-01

933447 1125743 14 465 10 13 citations h-index g-index papers 15 15 15 728 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Role of Ciliary Protein Intraflagellar Transport Protein 88 in the Regulation of Cartilage Thickness and Osteoarthritis Development in Mice. Arthritis and Rheumatology, 2022, 74, 49-59.	5.6	21
2	P127â \in f Disrupting the cartilage mechanostat: the role of the ciliary protein IFT88 in the adolescent growth plate. Rheumatology, 2022, 61, .	1.9	0
3	The role and uses of antibodies in COVID-19 infections: a living review. Oxford Open Immunology, 2021, 2, iqab003.	2.8	17
4	Age-dependent changes in protein incorporation into collagen-rich tissues of mice by in vivo pulsed SILAC labelling. ELife, 2021, 10, .	6.0	22
5	Ciliary proteins specify the cell inflammatory response by tuning NF $\hat{\mathbb{P}}$ B signaling, independently of primary cilia. Journal of Cell Science, 2020, 133, .	2.0	20
6	Regulation of the Extracellular Matrix by Ciliary Machinery. Cells, 2020, 9, 278.	4.1	18
7	Ciliary IFT88 Protects Coordinated Adolescent Growth Plate Ossification From Disruptive Physiological Mechanical Forces. Journal of Bone and Mineral Research, 2020, 37, 1081-1096.	2.8	6
8	Mechanoadaptation: articular cartilage through thick and thin. Journal of Physiology, 2019, 597, 1271-1281.	2.9	67
9	Cilia protein IFT88 regulates extracellular protease activity by optimizing LRPâ€1–mediated endocytosis. FASEB Journal, 2018, 32, 6771-6782.	0.5	20
10	Hedgehog signalling does not stimulate cartilage catabolism and is inhibited by Interleukin- $\hat{1^2}$. Arthritis Research and Therapy, 2015, 17, 373.	3.5	21
11	Are cellular mechanosensors potential therapeutic targets in osteoarthritis?. International Journal of Clinical Rheumatology, 2014, 9, 155-167.	0.3	11
12	Interleukin- $1\hat{l}^2$ sequesters hypoxia inducible factor $2\hat{l}_\pm$ to the primary cilium. Cilia, 2013, 2, 17.	1.8	27
13	Primary cilia mediate mechanotransduction through control of ATPâ€induced Ca ²⁺ signaling in compressed chondrocytes. FASEB Journal, 2012, 26, 1663-1671.	0.5	172
14	Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin- $1\hat{l}^2$ -mediated cartilage degradation. Arthritis Research and Therapy, 2010, 12, R207.	3.5	43