Wolfgang Gindl-Altmutter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6331296/publications.pdf

Version: 2024-02-01

172 papers

8,593 citations

45 h-index 51608 86 g-index

177 all docs

177 docs citations

times ranked

177

7510 citing authors

#	Article	IF	Citations
1	Effects of fibrillar cellulosic additives on particleboard production and properties. Wood Material Science and Engineering, 2022, 17, 106-112.	2.3	2
2	The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Progress in Materials Science, 2022, 125, 100916.	32.8	61
3	Efficient recovery of superhydrophobic wax surfaces on solid wood. European Journal of Wood and Wood Products, 2022, 80, 345-353.	2.9	4
4	Facile Preparation of Mechanically Robust and Functional Silica/Cellulose Nanofiber Gels Reinforced with Soluble Polysaccharides. Nanomaterials, 2022, 12, 895.	4.1	3
5	Low temperature and moisture dependent curing behavior of selected wood adhesives. International Journal of Adhesion and Adhesives, 2022, 117, 103178.	2.9	4
6	Comparing the suitability of domestic spruce, beech, and poplar wood for high-strength densified wood. European Journal of Wood and Wood Products, 2022, 80, 859-876.	2.9	10
7	Fully bio-based composite foams made of wheat gluten and disintegrated spruce tree bark. Results in Materials, 2022, 15, 100299.	1.8	O
8	Alkali-extracted tree bark for efficient bio-based thermal insulation. Construction and Building Materials, 2021, 271, 121577.	7.2	18
9	Thermosetting natural fiber based composites. , 2021, , 187-214.		O
10	Sponge-like polypyrrole–nanofibrillated cellulose aerogels: synthesis and application. Journal of Materials Chemistry C, 2021, 9, 12615-12623.	5.5	14
11	Pore Development during the Carbonization Process of Lignin Microparticles Investigated by Small Angle X-ray Scattering. Molecules, 2021, 26, 2087.	3.8	8
12	Comparative Adhesive Bonding of Wood Chemically Modified with Either Acetic Anhydride or Butylene Oxide. Forests, 2021, 12, 546.	2.1	6
13	Thermal conductivity of untreated and chemically treated poplar bark and wood. Holzforschung, 2021, 75, 1125-1135.	1.9	8
14	Cure Kinetics and Inverse Analysis of Epoxy-Amine Based Adhesive Used for Fastening Systems. Materials, 2021, 14, 3853.	2.9	8
15	Efficient Wood Hydrophobization Exploiting Natural Roughness Using Minimum Amounts of Surfactant-Free Plant Oil Emulsions. ACS Omega, 2021, 6, 22202-22212.	3.5	4
16	Reinforcement effect of pulp fines and microfibrillated cellulose in highly densified binderless paperboards. Journal of Cleaner Production, 2021, 281, 125258.	9.3	19
17	Differences in adhesion between 1C-PUR and MUF wood adhesives to (ligno)cellulosic surfaces revealed by nanoindentation. International Journal of Adhesion and Adhesives, 2020, 98, 102507.	2.9	10
18	Transparent layer-by-layer coatings based on biopolymers and CeO2 to protect wood from UV light. Progress in Organic Coatings, 2020, 138, 105409.	3.9	24

#	Article	IF	CITATIONS
19	Superhydrophobic coatings on wood made of plant oil and natural wax. Progress in Organic Coatings, 2020, 148, 105891.	3.9	38
20	Adhesive strength and micromechanics of wood bonded at low temperature. International Journal of Adhesion and Adhesives, 2020, 103, 102697.	2.9	11
21	Effects of Fiber Angle on the Tensile Properties of Partially Delignified and Densified Wood. Materials, 2020, 13, 5405.	2.9	14
22	Wet esterification of never-dried cellulose: a simple process to surface-acetylated cellulose nanofibers. Green Chemistry, 2020, 22, 5605-5609.	9.0	41
23	Preparation of High Strength Plywood from Partially Delignified Densified Wood. Polymers, 2020, 12, 1796.	4. 5	25
24	Nanocellulose from fractionated sulfite wood pulp. Cellulose, 2020, 27, 9325-9336.	4.9	8
25	On the drying behavior of natural oils used for solid wood finishing. Progress in Organic Coatings, 2020, 148, 105831.	3.9	26
26	Structure and electrical resistivity of individual carbonised natural and man-made cellulose fibres. Journal of Materials Science, 2020, 55, 10271-10280.	3.7	10
27	Facile preparation of superhydrophobic wood surfaces <i>via</i> spraying of aqueous alkyl ketene dimer dispersions. RSC Advances, 2019, 9, 24357-24367.	3.6	24
28	Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellulose, 2019, 26, 7781-7796.	4.9	15
29	Wetting Behavior of Alder (Alnus cordata (Loisel) Duby) Wood Surface: Effect of Thermo-Treatment and Alkyl Ketene Dimer (AKD). Forests, 2019, 10, 770.	2.1	10
30	Preparation and Characterization of Bacterial Cellulose-Carbon Dot Hybrid Nanopaper for Potential Sensing Applications. Applied Sciences (Switzerland), 2019, 9, 107.	2.5	7
31	Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. International Journal of Adhesion and Adhesives, 2019, 94, 99-131.	2.9	159
32	Lignin-based multiwall carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2019, 121, 175-179.	7.6	32
33	Reinforcing effect of poly(furfuryl alcohol) in cellulose-based porous materials. Cellulose, 2019, 26, 4431-4444.	4.9	12
34	Fine Cellulosic Materials Produced from Chemical Pulp: the Combined Effect of Morphology and Rate of Addition on Paper Properties. Nanomaterials, 2019, 9, 321.	4.1	9
35	Application of surface chemical functionalized cellulose nanocrystals to improve the performance of UF adhesives used in wood based composites - MDF type. Carbohydrate Polymers, 2019, 206, 11-20.	10.2	65
36	Comparison of four technical lignins as a resource for electrically conductive carbon particles. BioResources, 2019, 14, 1091-1109.	1.0	31

#	Article	IF	CITATIONS
37	How softwood tree branches are attached to stems: hierarchical extension of Shigo's stem–branch model. Trees - Structure and Function, 2018, 32, 1113-1121.	1.9	12
38	Urea-formaldehyde microspheres as a potential additive to wood adhesive. Journal of Wood Science, 2018, 64, 390-397.	1.9	11
39	Electrically Conducting Carbon Microparticles by Direct Carbonization of Spent Wood Pulping Liquor. ACS Sustainable Chemistry and Engineering, 2018, 6, 3385-3391.	6.7	18
40	Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170046.	3.4	7
41	Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. International Journal of Biological Macromolecules, 2018, 106, 1288-1296.	7.5	214
42	Electrically-Conductive Sub-Micron Carbon Particles from Lignin: Elucidation of Nanostructure and Use as Filler in Cellulose Nanopapers. Nanomaterials, 2018, 8, 1055.	4.1	7
43	Oil-absorbing porous cellulosic material from sized wood pulp fines. Holzforschung, 2018, 73, 83-92.	1.9	3
44	Highly effective impregnation and modification of spruce wood with epoxy-functional siloxane using supercritical carbon dioxide solvent. Wood Science and Technology, 2018, 52, 1607-1620.	3.2	12
45	Cell-layer dependent adhesion differences in wood bonds. Composites Part A: Applied Science and Manufacturing, 2018, 114, 21-29.	7.6	10
46	A General Aqueous Silanization Protocol to Introduce Vinyl, Mercapto or Azido Functionalities onto Cellulose Fibers and Nanocelluloses. Molecules, 2018, 23, 1427.	3.8	46
47	Suitability of Different Variants of Polyethylene Glycol Impregnation for the Dimensional Stabilization of Oak Wood. Polymers, 2018, 10, 81.	4.5	25
48	Micromechanics of Cellulose Fibres and Their Composites. , 2017, , 299-321.		1
49	Nanocellulosic fillers for waterborne wood coatings: reinforcement effect on free-standing coating films. Wood Science and Technology, 2017, 51, 601-613.	3.2	22
50	Fabrication of homogeneous and enhanced soybean protein isolate-based composite films via incorporating TEMPO oxidized nanofibrillated cellulose stablized nano-ZnO hybrid. Cellulose, 2017, 24, 4807-4819.	4.9	16
51	Adhesive distribution related to mechanical performance of high density wood fibre board. International Journal of Adhesion and Adhesives, 2017, 78, 23-27.	2.9	8
52	Nano meets the sheet: adhesive-free application of nanocellulosic suspensions in paper conservation. Heritage Science, 2017, 5, .	2.3	31
53	Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose. Journal of Materials Science, 2017, 52, 60-72.	3.7	32
54	Nanopaper Properties and Adhesive Performance of Microfibrillated Cellulose from Different (Ligno-)Cellulosic Raw Materials. Polymers, 2017, 9, 326.	4.5	12

#	Article	IF	CITATIONS
55	Simple Green Route to Performance Improvement of Fully Bio-Based Linseed Oil Coating Using Nanofibrillated Cellulose. Polymers, 2017, 9, 425.	4.5	15
56	Properties of Woven Natural Fiber-Reinforced Biocomposites. Journal of Renewable Materials, 2016, 4, 215-224.	2.2	2
57	Reinforcement of Poly (Lactic Acid) with Spray-dried Lignocellulosic Material. BioResources, 2016, 12, .	1.0	1
58	Carbon Microparticles from Organosolv Lignin as Filler for Conducting Poly(Lactic Acid). Polymers, 2016, 8, 205.	4.5	14
59	Microfibrillated Lignocellulose Enables the Suspension-Polymerisation of Unsaturated Polyester Resin for Novel Composite Applications. Polymers, 2016, 8, 255.	4.5	20
60	Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose, 2016, 23, 1189-1197.	4.9	47
61	Lignocellulose Nanofiber-Reinforced Polystyrene Produced from Composite Microspheres Obtained in Suspension Polymerization Shows Superior Mechanical Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13520-13525.	8.0	54
62	Survey of selected adhesive bonding properties of nine European softwood and hardwood species. European Journal of Wood and Wood Products, 2016, 74, 809-819.	2.9	57
63	Morphology and rheology of cellulose nanofibrils derived from mixtures of pulp fibres and papermaking fines. Cellulose, 2016, 23, 2439-2448.	4.9	27
64	Effect of addition of microfibrillated cellulose to urea-formaldehyde on selected adhesive characteristics and distribution in particle board. Cellulose, 2016, 23, 571-580.	4.9	65
65	Reinforcement of polycaprolactone with microfibrillated lignocellulose. Industrial Crops and Products, 2016, 93, 302-308.	5.2	46
66	Synergy of multi-scale toughening and protective mechanisms at hierarchical branch-stem interfaces. Scientific Reports, 2015, 5, 14522.	3.3	12
67	Light microscopic detection of UF adhesive in industrial particle board. Wood Science and Technology, 2015, 49, 517-526.	3.2	16
68	Electrically conductive kraft lignin-based carbon filler for polymers. Carbon, 2015, 89, 161-168.	10.3	22
69	Wood modification with tricine. Holzforschung, 2015, 69, 985-991.	1.9	13
70	Compatibility between Cellulose and Hydrophobic Polymer Provided by Microfibrillated Lignocellulose. ChemSusChem, 2015, 8, 87-91.	6.8	44
71	Nanocellulose-modified Wood Adhesives. Materials and Energy, 2014, , 253-264.	0.1	7
72	Effect of plasma treatment on cell-wall adhesion of urea-formaldehyde resin revealed by nanoindentation. Holzforschung, 2014, 68, 707-712.	1.9	22

#	Article	IF	CITATIONS
73	Comparative adhesion analysis at glue joints in European beech and Norway spruce wood by means of nanoindentation. International Journal of Adhesion and Adhesives, 2014, 50, 45-49.	2.9	7
74	Effects of UV-irradiation on tricine impregnated wood. European Journal of Wood and Wood Products, 2014, 72, 617-622.	2.9	7
75	Radial crystalline texture in a lyocell fibre revealed by synchrotron nanofocus wide-angle X-ray scattering. Cellulose, 2014, 21, 845-851.	4.9	7
76	Microfibrillated cellulose and cellulose nanopaper from Miscanthus biogas production residue. Cellulose, 2014, 21, 1601-1610.	4.9	16
77	Improving the mechanical resistance of waterborne wood coatings by adding cellulose nanofibres. Reactive and Functional Polymers, 2014, 85, 214-220.	4.1	77
78	Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 82-87.	4.7	33
79	Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation. International Journal of Adhesion and Adhesives, 2013, 40, 129-134.	2.9	25
80	Mechanical properties of adhesives for bonding woodâ€"A review. International Journal of Adhesion and Adhesives, 2013, 45, 32-41.	2.9	188
81	Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM). Holzforschung, 2013, 67, 155-159.	1.9	20
82	The Optical Appearance of Wood Related to Nanoscale Surface Roughness. BioResources, 2013, 8, .	1.0	6
83	Shear strength of the lyocell fiber/polymer matrix interface evaluated with the microbond technique. Journal of Composite Materials, 2012, 46, 359-367.	2.4	19
84	Determination of adhesive energy at the wood cell-wall/UF interface by nanoindentation (NI). Holzforschung, 2012, 66, 781-787.	1.9	14
85	The significance of lap-shear testing of wood adhesive bonds by means of Volkersen's shear lag model. European Journal of Wood and Wood Products, 2012, 70, 903-905.	2.9	5
86	Detection of UF resin on wood particles and in particleboards: potential of selected methods for practice-oriented offline detection. European Journal of Wood and Wood Products, 2012, 70, 829-837.	2.9	12
87	Particle Board and Oriented Strand Board Prepared with Nanocellulose-Reinforced Adhesive. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	72
88	High-Modulus Oriented Cellulose Nanopaper. ACS Symposium Series, 2012, , 3-16.	0.5	10
89	All-cellulose composites prepared from flax and lyocell fibres compared to epoxy–matrix composites. Composites Science and Technology, 2012, 72, 1304-1309.	7.8	60
90	Micromechanical properties of the interphase in pMDI and UF bond lines. Wood Science and Technology, 2012, 46, 611-620.	3.2	30

#	Article	IF	Citations
91	Comparison ofÂfracture energy testing by means ofÂdouble cantilever beam-(DCB)-specimens and lap joint testing method forÂthe characterization ofÂadhesively bonded wood. European Journal of Wood and Wood Products, 2012, 70, 3-10.	2.9	15
92	Reliability of wood adhesive bonds in a 50 year old glider construction. European Journal of Wood and Wood Products, 2012, 70, 381-384.	2.9	8
93	Identification of stiffness tensor components of wood cell walls by means of nanoindentation. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2101-2109.	7.6	48
94	Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds. Cellulose, 2011, 18, 1227-1237.	4.9	91
95	Comparison of two optical methods for contactless, full field and highly sensitive in-plane deformation measurements using the example of plywood. Wood Science and Technology, 2011, 45, 755-765.	3.2	26
96	Mechanical characterisation of adhesives in particle boards by means of nanoindentation. European Journal of Wood and Wood Products, 2010, 68, 421-426.	2.9	5
97	Knots in trees: strain distribution in a naturally optimised structure. Wood Science and Technology, 2010, 44, 389-398.	3.2	19
98	Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 2010, 45, 1-33.	3.7	2,042
99	Elastic properties of adhesive polymers. III. Adhesive polymer films under dry and wet conditions characterized by means of nanoindentation. Journal of Applied Polymer Science, 2010, 118, 1331-1334.	2.6	17
100	Effects of Long-term Storage on the Mechanical Characteristics of Wood Plastic Composites Produced from Thermally Modified Wood Fibers. Journal of Thermoplastic Composite Materials, 2010, 23, 845-853.	4.2	8
101	Evaluation of Experimental Parameters in the Microbond Test with Regard to Lyocell Fibers. Journal of Reinforced Plastics and Composites, 2010, 29, 2356-2367.	3.1	15
102	Tensile shear strength of UF- and MUF-bonded veneer related to data of adhesives and cell walls measured by nanoindentation. Holzforschung, 2010, 64, .	1.9	27
103	Converse Piezoelectric Effect in Cellulose I Revealed by Wide-Angle X-ray Diffraction. Biomacromolecules, 2010, 11, 1281-1285.	5.4	20
104	Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle. Journal of Materials Science, 2009, 44, 4399-4406.	3.7	83
105	Comparison of molecular orientation and mechanical properties of lyocell fibre tow and staple fibres. Cellulose, 2009, 16, 765-772.	4.9	24
106	Feasibility of particle board production using bone glue. European Journal of Wood and Wood Products, 2009, 67, 243-245.	2.9	17
107	Cellulose in Never-Dried Gel Oriented by an AC Electric Field. Biomacromolecules, 2009, 10, 1315-1318.	5.4	35
108	Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer, 2008, 49, 792-799.	3.8	70

#	Article	IF	Citations
109	Changes in microfibril angle in cyclically deformed dry coir fibers studied by in-situ synchrotron X-ray diffraction. Journal of Materials Science, 2008, 43, 350-356.	3.7	35
110	Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 297-304.	2.1	18
111	Adhesive bond strength of end grain joints in softwood with varying density. Holzforschung, 2008, 62, 237-242.	1.9	10
112	Observation of the influence of temperature on the mechanical properties of wood adhesives by nanoindentation. Holzforschung, 2008, 62, 714-717.	1.9	23
113	Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (SThM). Holzforschung, 2008, 62, 91-98.	1.9	92
114	Tensile strength of softwood butt end joints. Part 1: Effect of grain angle on adhesive bond strength. Wood Material Science and Engineering, 2007, 2, 83-89.	2.3	8
115	Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry. Journal of Applied Polymer Science, 2007, 103, 3936-3939.	2.6	58
116	Drawing of self-reinforced cellulose films. Journal of Applied Polymer Science, 2007, 103, 2703-2708.	2.6	66
117	Effect of grain angle on shear strength of glued end grain to flat grain joints of defect-free softwood timber. Wood Science and Technology, 2007, 41, 501-509.	3.2	11
118	Nanoindentation mapping of a wood-adhesive bond. Applied Physics A: Materials Science and Processing, 2007, 88, 371-375.	2.3	44
119	Sugar beet cellulose nanofibril-reinforced composites. Cellulose, 2007, 14, 419-425.	4.9	210
120	Wood Adhesive Bondlines by Nanoindentation. , 2007, , 493-494.		1
121	Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung, 2006, 60, 429-433.	1.9	91
122	Changes in the Molecular Orientation and Tensile Properties of Uniaxially Drawn Cellulose Films. Biomacromolecules, 2006, 7, 3146-3150.	5.4	57
123	Mechanism of stress transfer in a single wood fibre-LDPE composite by means of electronic laser speckle interferometry. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1406-1412.	7.6	32
124	Tensile Testing of Single Regenerated Cellulose Fibres. Macromolecular Symposia, 2006, 244, 83-88.	0.7	21
125	Strain hardening in regenerated cellulose fibres. Composites Science and Technology, 2006, 66, 2049-2053.	7.8	32
126	Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction. Composites Science and Technology, 2006, 66, 2639-2647.	7.8	52

#	Article	IF	Citations
127	Nanoindentation of regenerated cellulose fibres. Cellulose, 2006, 13, 1-7.	4.9	33
128	Orientation of cellulose crystallites in regenerated cellulose fibres under tensile and bending loads. Cellulose, 2006, 13, 621-627.	4.9	22
129	Biomechanics of a branch – stem junction in softwood. Trees - Structure and Function, 2006, 20, 643-648.	1.9	42
130	Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. Applied Physics A: Materials Science and Processing, 2006, 83, 19-22.	2.3	54
131	Artificial weathering of wood surfaces modified by melamine formaldehyde resins. European Journal of Wood and Wood Products, 2006, 64, 198-203.	2.9	57
132	Comparing dry bond strength of spruce and beech wood glued with different adhesives by means of scarf- and lap joint testing method. European Journal of Wood and Wood Products, 2006, 64, 269-271.	2.9	43
133	Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer. European Journal of Wood and Wood Products, 2006, 64, 373-376.	2.9	64
134	Shear strain distribution in PRF and PUR bonded 3–ply wood sheets by means of electronic laser speckle interferometry. Wood Science and Technology, 2006, 40, 351-357.	3.2	12
135	Measurement of strain distribution in timber finger joints. Wood Science and Technology, 2006, 40, 631-636.	3.2	28
136	Elastic properties of adhesive polymers. II. Polymer films and bond lines by means of nanoindentation. Journal of Applied Polymer Science, 2006, 102, 1234-1239.	2.6	62
137	In-Situ X-ray Diffraction as a Tool to Probe Mechanical Phenomena Down to the Nano-Scale. Advanced Engineering Materials, 2006, 8, 1084-1088.	3.5	1
138	Mechanical Properties of Regenerated Cellulose Fibres for Composites. Macromolecular Symposia, 2006, 244, 119-125.	0.7	106
139	All-cellulose nanocomposite. Polymer, 2005, 46, 10221-10225.	3.8	286
140	Comparison of the in-plane shear strength of OSB and plywood using five point bending and EN 789 steel plate test methods. European Journal of Wood and Wood Products, 2005, 63, 160-164.	2.9	8
141	A two-step modification treatment of solid wood by bulk modification and surface treatment. Wood Science and Technology, 2005, 39, 502-511.	3.2	21
142	Comparison of UV and confocal Raman microscopy to measure the melamine–formaldehyde resin content within cell walls of impregnated spruce wood. Holzforschung, 2005, 59, 210-213.	1.9	44
143	Direct measurement of strain distribution along a wood bond line. Part 1: Shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry. Holzforschung, 2005, 59, 300-306.	1.9	50
144	Direct measurement of strain distribution along a wood bond line. Part 2: Effects of adhesive penetration on strain distribution. Holzforschung, 2005, 59, 307-310.	1.9	58

#	Article	IF	Citations
145	UV-microscopic analysis of acetylated spruce and birch cell walls. Holzforschung, 2004, 58, 483-488.	1.9	9
146	EFFECTS OF MACRO- AND MICRO-STRUCTURAL VARIABILITY ON THE SHEAR BEHAVIOR OF SOFTWOOD. IAWA Journal, 2004, 25, 231-243.	2.7	20
147	Wood pulp fiber reinforced melamine-formaldehyde composites. Journal of Materials Science, 2004, 39, 3245-3247.	3.7	15
148	The interphase in phenol–formaldehyde and polymeric methylene di-phenyl-di-isocyanate glue lines in wood. International Journal of Adhesion and Adhesives, 2004, 24, 279-286.	2.9	79
149	Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Composites Science and Technology, 2004, 64, 2407-2413.	7.8	145
150	Mechanical properties of spruce wood cell walls by nanoindentation. Applied Physics A: Materials Science and Processing, 2004, 79, 2069-2073.	2.3	205
151	Using a water-soluble melamine-formaldehyde resin to improve the hardness of Norway spruce wood. Journal of Applied Polymer Science, 2004, 93, 1900-1907.	2.6	36
152	The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1345-1349.	7.6	134
153	Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technology, 2003, 87, 325-330.	9.6	106
154	Comparison of the TL-Shear Strength of Normal and Compression Wood of European Larch. Holzforschung, 2003, 57, 421-426.	1.9	19
155	EFFECTS OF CELL ANATOMY ON THE PLASTIC AND ELASTIC BEHAVIOUR OF DIFFERENT WOOD SPECIES LOADED PERPENDICULAR TO GRAIN. IAWA Journal, 2003, 24, 117-128.	2.7	24
156	Overview of White-Rot Research: Where We are Today. ACS Symposium Series, 2003, , 73-96.	0.5	28
157	Comparing Mechanical Properties of Normal and Compression Wood in Norway Spruce: The Role of Lignin in Compression Parallel to the Grain. Holzforschung, 2002, 56, 395-401.	1.9	54
158	Using UV-Microscopy to Study Diffusion of Melamine-Urea-Formaldehyde Resin in Cell Walls of Spruce Wood. Holzforschung, 2002, 56, 103-107.	1.9	76
159	Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1141-1145.	7.6	114
160	Axial compression strength of Norway spruce related to structural variability and lignin content. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1623-1628.	7.6	55
161	Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation. Canadian Journal of Botany, 2002, 80, 1029-1033.	1.1	74
162	The Relationship between near Infrared Spectra of Radial Wood Surfaces and Wood Mechanical Properties. Journal of Near Infrared Spectroscopy, 2001, 9, 255-261.	1.5	87

#	Article	IF	CITATIONS
163	SEM and UV-microscopic investigation of glue lines in Parallam \hat{A}^{\otimes} PSL. European Journal of Wood and Wood Products, 2001, 59, 211-214.	2.9	21
164	A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181, 279-287.	4.7	238
165	The effect of lignin on the moisture-dependent behavior of spruce wood in axial compression. Journal of Materials Science Letters, 2001, 20, 2161-2162.	0.5	13
166	The Effect of Varying Latewood Proportion on the Radial Distribution of Lignin Content in a Pine Stem. Holzforschung, 2001, 55, 455-458.	1.9	14
167	CELL-WALL LIGNIN CONTENT RELATED TO TRACHEID DIMENSIONS IN DROUGHT-SENSITIVE AUSTRIAN PINE (PINUS NIGRA). IAWA Journal, 2001, 22, 113-120.	2.7	19
168	Effects of altitude on tracheid differentiation and lignification of Norway spruce. Canadian Journal of Botany, 2001, 79, 815-821.	1.1	28
169	The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees - Structure and Function, 2000, 14, 409-414.	1.9	160
170	Characteristics of Spruce [Picea abies (L.) Karst] Latewood Formed under Abnormally Low Temperatures. Holzforschung, 2000, 54, 9-11.	1.9	30
171	Increase of error in lignin measurement using ultraviolet microscopy due to multiple scanning. Journal of Wood Science, 1999, 45, 179-180.	1.9	4
172	Climatic Significance of Light Rings in Timberline Spruce, Picea abies, Austrian Alps. Arctic, Antarctic, and Alpine Research, 1999, 31, 242.	1.1	14