Ian C Freestone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6330711/publications.pdf

Version: 2024-02-01

70 papers 3,756 citations

30 h-index 60 g-index

72 all docs 72 docs citations

times ranked

72

2319 citing authors

#	Article	IF	CITATIONS
1	The Lycurgus Cup — A Roman nanotechnology. Gold Bulletin, 2007, 40, 270-277.	3.2	376
2	AN INVESTIGATION OF THE ORIGIN OF THE COLOUR OF THE LYCURGUS CUP BY ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY. Archaeometry, 1990, 32, 33-45.	0.6	246
3	Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline. Journal of Archaeological Science, 2006, 33, 521-530.	1.2	241
4	LEAD GLAZES IN ANTIQUITY—METHODS OF PRODUCTION AND REASONS FOR USE*. Archaeometry, 1998, 40, 241-260.	0.6	237
5	The role of liquid immiscibility in the genesis of carbonatites? An experimental study. Contributions To Mineralogy and Petrology, 1980, 73, 105-117.	1.2	221
6	Strontium Isotopes in the Investigation of Early Glass Production: Byzantine and Early Islamic Glass from the Near East*. Archaeometry, 2003, 45, 19-32.	0.6	210
7	The origins of Byzantine glass from Maroni Petrera, Cyprus. Archaeometry, 2002, 44, 257-272.	0.6	181
8	Natron glass production and supply in the late antique and early medieval Near East: The effect of the Byzantine-Islamic transition. Journal of Archaeological Science, 2016, 75, 57-71.	1.2	126
9	Ancient glass: from kaleidoscope to crystal ball. Journal of Archaeological Science, 2015, 56, 233-241.	1.2	108
10	RETENTION OF PHOSPHATE IN BURIED CERAMICS: AN ELECTRON MICROBEAM APPROACH. Archaeometry, 1985, 27, 161-177.	0.6	97
11	AN EXAMINATION OF THE HIGH GLOSS SURFACE FINISHES ON GREEK ATTIC AND ROMAN SAMIAN WARES. Archaeometry, 1982, 24, 117-126.	0.6	92
12	LOG-RATIO COMPOSITIONAL DATA ANALYSIS IN ARCHAEOMETRY*. Archaeometry, 2006, 48, 511-531.	0.6	91
13	Origin of carbonatites by liquid immiscibility. Nature, 1979, 279, 52-54.	13.7	84
14	Glass groups, glass supply and recycling in late Roman Carthage. Archaeological and Anthropological Sciences, 2017, 9, 1223-1241.	0.7	83
15	APPLICATIONS AND POTENTIAL OF ELECTRON PROBE MICROâ€ANALYSIS IN TECHNOLOGICAL AND PROVENANC INVESTIGATIONS OF ANCIENT CERAMICS. Archaeometry, 1982, 24, 99-116.	E _{0.6}	82
16	Glass production in Late Antiquity and the Early Islamic period: a geochemical perspective. Geological Society Special Publication, 2006, 257, 201-216.	0.8	71
17	Liquid immiscibility in alkali-rich magmas. Chemical Geology, 1978, 23, 115-123.	1.4	68
18	EGYPTIAN FAIENCE: AN INVESTIGATION OF THE METHODS OF PRODUCTION. Archaeometry, 1983, 25, 17-27.	0.6	63

#	Article	IF	CITATIONS
19	TEXTURAL ANALYSIS OF CERAMIC THIN SECTIONS: EVALUATION OF GRAIN SAMPLING PROCEDURES. Archaeometry, 1985, 27, 64-74.	0.6	63
20	An indigenous technology? A commentary on Lankton et al. "Early primary glass production in southern Nigeria". Journal of African Archaeology, 2006, 4, 139-141.	0.3	56
21	Technology, production and chronology of red window glass in the medieval period – rediscovery of a lost technology. Journal of Archaeological Science, 2014, 41, 89-105.	1.2	55
22	Mineralogical applications of the analytical SEM in archaeology. Mineralogical Magazine, 1987, 51, 21-31.	0.6	54
23	MODELLING CHANGES IN MOLLUSC SHELL INTERNAL MICROSTRUCTURE DURING FIRING: IMPLICATIONS FOR TEMPERATURE ESTIMATION IN SHELLâ€BEARING POTTERY*. Archaeometry, 2007, 49, 529-541.	0.6	52
24	Mullite and the mystery of Hessian wares. Nature, 2006, 444, 437-438.	13.7	49
25	European cobalt sources identified in the production of Chinese famille rose porcelain. Journal of Archaeological Science, 2017, 80, 27-36.	1.2	47
26	The Provenance of Ancient Glass through Compositional Analysis. Materials Research Society Symposia Proceedings, 2004, 852, 188.	0.1	45
27	THE PROVENANCE AND TECHNOLOGY OF NEAR EASTERN GLASS: OXYGEN ISOTOPES BY LASER FLUORINATION AS A COMPLEMENT TO STRONTIUM*. Archaeometry, 2006, 48, 253-270.	0.6	43
28	Composition, Production and Procurement of Glass at San Vincenzo al Volturno: An Early Medieval Monastic Complex in Southern Italy. PLoS ONE, 2013, 8, e76479.	1.1	42
29	A TECHNOLOGICAL STUDY OF CHINESE PORCELAIN OF THE YUAN DYNASTY. Archaeometry, 1984, 26, 139-154.	0.6	41
30	Massâ€Produced Mullite Crucibles in Medieval Europe: Manufacture and Material Properties. Journal of the American Ceramic Society, 2008, 91, 2071-2074.	1.9	40
31	HIMT, glass composition and commodity branding in the primary glass industry. , 2018, , 159-190.		33
32	â€~Alexandrian' glass confirmed by hafnium isotopes. Scientific Reports, 2020, 10, 11322.	1.6	31
33	Glass production at an Early Islamic workshop in Tel Aviv. Journal of Archaeological Science, 2015, 62, 45-54.	1.2	30
34	Geochemistry of Byzantine and Early Islamic glass from Jerash, Jordan: Typology, recycling, and provenance. Geoarchaeology - an International Journal, 2018, 33, 623-640.	0.7	29
35	A XANES study of chromophores in archaeological glass. Applied Physics A: Materials Science and Processing, 2013, 111, 99-108.	1.1	27
36	The relationship between enamelling on ceramics and on glass in the Islamic world. Archaeometry, 2002, 44, 251-255.	0.6	26

#	Article	IF	CITATIONS
37	Compositional identification of 6th c. AD glass from the Lower Danube. Journal of Archaeological Science: Reports, 2016, 7, 625-632.	0.2	26
38	Regional patterns in medieval European glass composition as a provenancing tool. Journal of Archaeological Science, 2019, 110, 104991.	1.2	25
39	Theophilus and the Composition of Medieval Glass. Materials Research Society Symposia Proceedings, 1992, 267, 739.	0.1	23
40	Significance of Phosphate in Ceramic Bodies: discussion of paper by Bollong et al Journal of Archaeological Science, 1994, 21, 425-426.	1.2	21
41	AN INVESTIGATION INTO THE RELATIONSHIP BETWEEN THE RAW MATERIALS USED IN THE PRODUCTION OF CHINESE PORCELAIN AND STONEWARE BODIES AND THE RESULTING MICROSTRUCTURES*. Archaeometry, 2012, 54, 37-55.	0.6	21
42	The low temperature field of liquid immiscibility in the system K2O-Al2O3-FeO-SiO2 with special reference to the join fayalite-leucite-silica. Contributions To Mineralogy and Petrology, 1983, 82, 291-299.	1.2	18
43	Composition and Origin of Early Mediaeval Opaque Red Enamel from Britain and Ireland. Journal of Archaeological Science, 1999, 26, 913-921.	1.2	18
44	Composition of Byzantine glasses from Umm el-Jimal, northeast Jordan: Insights into glass origins and recycling. Journal of Cultural Heritage, 2016, 21, 809-818.	1.5	18
45	Using handheld pXRF to study medieval stained glass: A methodology using trace elements. MRS Advances, 2017, 2, 1785-1800.	0.5	17
46	A Quasi Non-destructive Microsampling Technique for the Analysis of Intact Glass Objects By Sem/edxa. Archaeometry, 2001, 43, 517-527.	0.6	15
47	A Synchrotronâ€Based Study of the <i>Mary Rose</i> Iron Cannonballs. Angewandte Chemie - International Edition, 2018, 57, 7390-7395.	7.2	13
48	Exotic glass types and the intensity of recycling in the northwest Quarter of Gerasa (Jerash, Jordan). Journal of Archaeological Science, 2022, 140, 105546.	1.2	11
49	The origins of two purportedly pre-Columbian Mexican crystal skulls. Journal of Archaeological Science, 2008, 35, 2751-2760.	1.2	10
50	The introduction of celadon production in North China: Technological characteristics and diversity of the earliest wares. Journal of Archaeological Science, 2020, 114, 105057.	1.2	10
51	Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass. Proceedings of SPIE, 2012, , .	0.8	9
52	Tradition and indigeneity in Mughal architectural glazed tiles. Journal of Archaeological Science, 2014, 49, 546-555.	1.2	9
53	Isotopic composition of glass from the Levant and the south-eastern Mediterranean Region. , 2009, , 31-52.		9
54	Immiscibility in tholeiites. Mineralogical Magazine, 1979, 43, 544-546.	0.6	8

#	Article	IF	CITATIONS
55	Occurrence of phosphatic corrosion products on bronze swords of the Warring States period buried at Lijiaba site in Chongqing, China. Heritage Science, 2017, 5, .	1.0	6
56	Highâ€ŧemperature performance of twoâ€ŀayered ceramics and the implications for Roman crucibles. Archaeometry, 2020, 62, 935.	0.6	4
57	A glass workshop in  Aqir, Israel and a new type of compositional contamination. Journal of Archaeological Science: Reports, 2021, 35, 102786.	0.2	4
58	Fe K-edge x-ray absorption spectroscopy of corrosion phases of archaeological iron: results, limitations, and the need for complementary techniques. Journal of Physics Condensed Matter, 2021, 33, 344002.	0.7	4
59	Pattern in Glass Use in the Roman and Byzantine Worlds: A Report on Current Research at the Institute of Archaeology and UCL Qatar. Archaeology International UCL, Institute of Archaeology, 2014, 17, .	0.1	4
60	Characterisation of Byzantine and early Islamic primary tank furnace glass. Journal of Archaeological Science: Reports, 2018, 20, 722-735.	0.2	3
61	Technical examination of enamels from the Botkin collection. Studies in Conservation, 2012, 57, S147-S156.	0.6	2
62	Raw materials and technology of Medieval Glass from Venice: The Basilica of SS. Maria e Donato in Murano. Journal of Archaeological Science: Reports, 2021, 37, 102981.	0.2	2
63	The production of red glass and enamel in the Late Iron Age, Roman and Byzantine periods. , 2016, , 142-154.		2
64	Dating Nathan: The Oldest Stained Glass Window in England?. Heritage, 2021, 4, 937-960.	0.9	1
65	Developments in Ceramic Technology in North China in the Sixth Century C.E Archaeology International UCL, Institute of Archaeology, 2018, 20, .	0.1	1
66	The blues of Romuliana. Starinar, 2021, , 207-230.	0.4	1
67	Titelbild: A Synchrotron-Based Study of the Mary Rose Iron Cannonballs (Angew. Chem. 25/2018). Angewandte Chemie, 2018, 130, 7377-7377.	1.6	0
68	A Synchrotronâ€Based Study of the <i>Mary Rose</i> Iron Cannonballs. Angewandte Chemie, 2018, 130, 7512-7517.	1.6	0
69	An early Byzantine alkali glazing tradition? Discussion of P. Armstrong (2020). The earliest glazed ceramics in constantinople: A regional or international phenomenon? Journal of archaeological science: Reports, 29, 102,078. Journal of Archaeological Science: Reports, 2021, 35, 102746.	0.2	0

D. R. C. Kempe, and A. P. Harvey, eds. The Petrology of Archaeological Artefacts. Oxford (Oxford) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 1