
Ana Cristina Braga Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6330667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vitro digestion and bioaccessibility studies of vitamin E-loaded nanohydroxyapatite Pickering emulsions and derived fortified foods. LWT - Food Science and Technology, 2022, 154, 112706.	2.5	11
2	Emerging challenges in assessing bio-based nanosystems' behaviour under in vitro digestion focused on food applications – A critical view and future perspectives. Food Research International, 2022, 157, 111417.	2.9	4
3	Exploring the performance of amaranth grain starch and protein microcapsules as β-carotene carrier systems for food applications. Food Structure, 2022, 33, 100287.	2.3	10
4	Characterization and Genomic Analysis of a New Phage Infecting Helicobacter pylori. International Journal of Molecular Sciences, 2022, 23, 7885.	1.8	3
5	Influence of the addition of different ingredients on the bioaccessibility of glucose released from rice during dynamic <i>inÂvitro</i> gastrointestinal digestion. International Journal of Food Sciences and Nutrition, 2021, 72, 45-56.	1.3	9
6	Encapsulated Pine Bark Polyphenolic Extract during Gastrointestinal Digestion: Bioaccessibility, Bioactivity and Oxidative Stress Prevention. Foods, 2021, 10, 328.	1.9	17
7	Nanoemulsions for Enhancement of Curcumin Bioavailability and Their Safety Evaluation: Effect of Emulsifier Type. Nanomaterials, 2021, 11, 815.	1.9	17
8	Lipid-based nanostructures as a strategy to enhance curcumin bioaccessibility: Behavior under digestion and cytotoxicity assessment. Food Research International, 2021, 143, 110278.	2.9	29
9	Tackling older adults' malnutrition through the development of tailored food products. Trends in Food Science and Technology, 2021, 115, 55-73.	7.8	9
10	Characterization of the behavior of carotenoids from pitanga (Eugenia uniflora) and buriti (Mauritia) Tj ETQq0 0 Food Science and Technology, 2020, 57, 650-662.	Ο rgBT /Ον 1.4	erlock 10 Tf 5 15
11	β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Research International, 2020, 131, 108979.	2.9	30
12	Rice in vitro digestion: application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study. Journal of Food Science and Technology, 2020, 57, 1393-1404.	1.4	30
13	Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. Food and Bioprocess Technology, 2020, 13, 67-87.	2.6	10
14	In vitro gastrointestinal evaluation of a juçara-based smoothie: effect of processing on phenolic compounds bioaccessibility. Journal of Food Science and Technology, 2019, 56, 5017-5026.	1.4	14
15	Emergent food proteins – Towards sustainability, health and innovation. Food Research International, 2019, 125, 108586.	2.9	141
16	Nanoparticles of lactoferrin for encapsulation of food ingredients. , 2019, , 147-168.		6
17	Amphiphilic Modified Galactomannan as a Novel Potential Carrier for Hydrophobic Compounds. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	9
18	Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions, lournal of Food Engineering, 2019, 243, 89-100.	2.7	73

#	Article	IF	CITATIONS
19	Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 2019, 150, 19-27.	2.9	63
20	Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Research International, 2019, 120, 656-667.	2.9	70
21	Downscale fermentation for xylooligosaccharides production by recombinant Bacillus subtilis 3610. Carbohydrate Polymers, 2019, 205, 176-183.	5.1	22
22	Emerging opportunities in exploring the nutritional/functional value of amaranth. Food and Function, 2018, 9, 5499-5512.	2.1	58
23	Protein-Based Structures for Food Applications: From Macro to Nanoscale. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	42
24	Electric Field Processing: Novel Perspectives on Allergenicity of Milk Proteins. Journal of Agricultural and Food Chemistry, 2018, 66, 11227-11233.	2.4	26
25	In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus. Journal of Functional Foods, 2018, 46, 278-287.	1.6	38
26	Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science and Technology, 2018, 78, 270-291.	7.8	160
27	Characterization of Particle Properties in Nanoemulsions. , 2018, , 519-546.		6
28	Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. Journal of Functional Foods, 2018, 48, 605-613.	1.6	70
29	In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids, 2018, 84, 267-275.	5.6	22
30	Advances in Food Nanotechnology. , 2017, , 11-38.		17
31	Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 2017, 243, 23-45.	7.0	215
32	Towards the understanding of the behavior of bio-based nanostructures during in vitro digestion. Current Opinion in Food Science, 2017, 15, 79-86.	4.1	17
33	In vitro digestion of oil-in-water emulsions stabilized by whey protein nanofibrils. Food Research International, 2017, 99, 790-798.	2.9	35
34	Physico-chemical stability and inÂvitro digestibility of beta-carotene-loaded lipid nanoparticles of cupuacu butter (Theobroma grandiflorum) produced by the phase inversion temperature (PIT) method. Journal of Food Engineering, 2017, 192, 93-102.	2.7	37
35	Nanostructured biobased systems for nutrient and bioactive compounds delivery. , 2017, , 43-85.		6
36	Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Research International, 2016, 90, 25-32.	2.9	24

#	Article	IF	CITATIONS
37	Lactoferrin-based nanoparticles as a vehicle for iron in food applications – Development and release profile. Food Research International, 2016, 90, 16-24.	2.9	34
38	InÂvitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocolloids, 2016, 58, 89-97.	5.6	50
39	Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids, 2016, 58, 126-140.	5.6	117
40	Influence of chitosan coating on protein-based nanohydrogels properties and inÂvitro gastric digestibility. Food Hydrocolloids, 2016, 60, 109-118.	5.6	48
41	InÂvitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers – Effect of interfacial composition. Food Hydrocolloids, 2016, 52, 460-467.	5.6	134
42	Edible Bio-Based Nanostructures: Delivery, Absorption and Potential Toxicity. Food Engineering Reviews, 2015, 7, 491-513.	3.1	41
43	Development and characterization of lactoferrin-GMP nanohydrogels: Evaluation of pH, ionic strength and temperature effect. Food Hydrocolloids, 2015, 48, 292-300.	5.6	58
44	Hollow chitosan/alginate nanocapsules for bioactive compound delivery. International Journal of Biological Macromolecules, 2015, 79, 95-102.	3.6	59
45	Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 2015, 115, 1-9.	5.1	159
46	Characterization, physicochemical stability, and evaluation of in vitro digestibility of solid lipid microparticles produced with palm kernel oil and tristearin. Food Science and Technology, 2014, 34, 532-538.	0.8	7
47	Physical Characterisation of an Alginate/Lysozyme Nano-Laminate Coating and Its Evaluation on â€~Coalho' Cheese Shelf Life. Food and Bioprocess Technology, 2014, 7, 1088-1098.	2.6	81
48	Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Engineering Reviews, 2014, 6, 1-19.	3.1	99
49	Biocomposite Films Based on κ-Carrageenan/Locust Bean Gum Blends and Clays: Physical and Antimicrobial Properties. Food and Bioprocess Technology, 2013, 6, 2081-2092.	2.6	75
50	Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 2013, 33, 199-206.	5.6	122
51	Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter, 2013, 9, 3147.	1.2	81
52	Transport mechanism of macromolecules on hydrophilic bio-polymeric matrices – Diffusion of protein-based compounds from chitosan films. Journal of Food Engineering, 2013, 116, 633-638.	2.7	21
53	Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innovative Food Science and Emerging Technologies, 2012, 16, 227-232.	2.7	70
54	Polysaccharide/Protein Nanomultilayer Coatings: Construction, Characterization and Evaluation of Their Effect on â€~Rocha' Pear (Pyrus communis L.) Shelf-Life. Food and Bioprocess Technology, 2012, 5, 2435-2445.	2.6	60

#	Article	IF	CITATIONS
55	Interactions between κ-carrageenan and chitosan in nanolayered coatings—Structural and transport properties. Carbohydrate Polymers, 2012, 87, 1081-1090.	5.1	70
56	Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 2012, 27, 287-292.	5.6	324
57	Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocolloids, 2012, 29, 280-289.	5.6	271
58	Effect of the matrix system in the delivery and in vitro bioactivity of microencapsulated Oregano essential oil. Journal of Food Engineering, 2012, 110, 190-199.	2.7	67
59	Development and characterization of a nanomultilayer coating of pectin and chitosan – Evaluation of its gas barrier properties and application on â€~Tommy Atkins' mangoes. Journal of Food Engineering, 2012, 110, 457-464.	2.7	99
60	Galactomannans use in the development of edible films/coatings for food applications. Trends in Food Science and Technology, 2011, 22, 662-671.	7.8	182
61	Rheological characterization of κ-carrageenan/galactomannan and xanthan/galactomannan gels: Comparison of galactomannans from non-traditional sources with conventional galactomannans. Carbohydrate Polymers, 2011, 83, 392-399.	5.1	69
62	Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 2011, 106, 111-118.	2.7	137
63	Characterization of galactomannans extracted from seeds of Cleditsia triacanthos and Sophora japonica through shear and extensional rheology: Comparison with guar gum and locust bean gum. Food Hydrocolloids, 2010, 24, 184-192.	5.6	139
64	Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydrate Polymers, 2009, 75, 408-414.	5.1	153