
Oscar E Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6330527/publications.pdf Version: 2024-02-01

Ωςςλρ Ε ΡΔΩρεγ

#	Article	IF	CITATIONS
1	High molecular weight chitosan based particles for insulin encapsulation obtained via <i>nanospray</i> technology. Drying Technology, 2022, 40, 430-445.	3.1	5
2	Novel chitosan-based strategies for insulin nanoencapsulation. , 2022, , 461-500.		0
3	Probiotics, Their Extracellular Vesicles and Infectious Diseases. Frontiers in Microbiology, 2022, 13, 864720.	3.5	16
4	Molecular interactions involved in the complexation process between buffalo whey proteins concentrate and folic acid. Food Chemistry, 2022, 396, 133734.	8.2	3
5	Potential bioactive ingredient from elderberry fruit: Process optimization for a maximum phenolic recovery, physicochemical characterization, and bioaccesibility. Journal of Berry Research, 2021, 11, 51-68.	1.4	15
6	Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications â~' A review. Biomedicine and Pharmacotherapy, 2021, 142, 111970.	5.6	41
7	Combined Experimental and Molecular Simulation Study of Insulin–Chitosan Complexation Driven by Electrostatic Interactions. Journal of Chemical Information and Modeling, 2020, 60, 854-865.	5.4	12
8	Toxic effects of A2E in human ARPE-19 cells were prevented by resveratrol: a potential nutritional bioactive for age-related macular degeneration treatment. Archives of Toxicology, 2020, 94, 553-572.	4.2	25
9	Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. International Journal of Biological Macromolecules, 2020, 165, 804-821.	7.5	31
10	Biocompatibility analysis of high molecular weight chitosan obtained from Pleoticus muelleri shrimps. Evaluation in prokaryotic and eukaryotic cells. Biochemistry and Biophysics Reports, 2020, 24, 100842.	1.3	4
11	Whey proteins-folic acid complexes: Formation, isolation and bioavailability in a Lactobacillus casei model. Food Structure, 2020, 26, 100162.	4.5	9
12	Biological responses induced by high molecular weight chitosan administrated jointly with Platelet-derived Growth Factors in different mammalian cell lines. International Journal of Biological Macromolecules, 2020, 158, 953-967.	7.5	8
13	Transcytosis of Bacillus subtilis extracellular vesicles through an in vitro intestinal epithelial cell model. Scientific Reports, 2020, 10, 3120.	3.3	24
14	Quinoa does not contain prolamins. Comments on "Quinoa protein: Composition, structure and functional propertiesâ€, Dakhili et al. (2019). Food Chemistry, 2020, 325, 126934.	8.2	3
15	Betanin loaded nanocarriers based on quinoa seed 11S globulin. Impact on the protein structure and antioxidant activity. Food Hydrocolloids, 2019, 87, 880-890.	10.7	22
16	Impact of Fat Replacement by Core-shell Microparticles on Set Type Yoghurts: Study of Their Physicochemical, Textural and Microstructural Properties. Current Nutrition and Food Science, 2019, 15, 61-71.	0.6	3
17	Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 425-434.	4.7	17
18	Proteins as Nano-Carriers for Bioactive Compounds. The Case of 7S and 11S Soy Globulins and Folic Acid Complexation. Polymers, 2018, 10, 149.	4.5	33

Oscar E Pérez

#	Article	IF	CITATIONS
19	Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect. Frontiers in Microbiology, 2017, 8, 1783.	3.5	73
20	Impact of hydroxypropylmethylcellulose on whey protein concentrate spread film at the air–water interface: Structural and surface dilatational characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 1-10.	4.7	15
21	Structured elastomeric submillimeter films displaying magneto and piezo resistivity. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 574-586.	2.1	19
22	Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	26
23	Power Ultrasound Assisted Design of Egg Albumin Nanoparticles. Food Biophysics, 2015, 10, 439-446.	3.0	24
24	Egg albumin–folic acid nanocomplexes: Performance as a functional ingredient and biological activity. Journal of Functional Foods, 2015, 18, 379-386.	3.4	27
25	β-Lactoglobulin–carboxymethylcellulose core–shell microparticles: Construction, characterization and isolation. Journal of Food Engineering, 2014, 131, 65-74.	5.2	19
26	Milk protein–vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impactÂonÂinÂvitro gastro-duodenal proteolysis. Food Hydrocolloids, 2014, 38, 40-47.	10.7	55
27	Encapsulation of citral in formulations containing sucrose or trehalose: Emulsions properties and stability. Food and Bioproducts Processing, 2014, 92, 266-274.	3.6	25
28	Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity. Sensors and Actuators A: Physical, 2013, 192, 34-41.	4.1	26
29	Structural and magnetic properties of Fe2â^'xCoSmxO4—nanoparticles and Fe2â^'xCoSmxO4—PDMS magnetoelastomers as a function of Sm content. Journal of Magnetism and Magnetic Materials, 2013, 327, 11-19.	2.3	18
30	Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains. Journal of Applied Physics, 2013, 114, .	2.5	41
31	Comparative study of sensory and instrumental characteristics of texture and color of boiled under-exploited Andean tubers. LWT - Food Science and Technology, 2012, 47, 83-90.	5.2	12
32	Anisotropic Magnetoresistance and Piezoresistivity in Structured Fe ₃ O ₄ -Silver Particles in PDMS Elastomers at Room Temperature. Langmuir, 2012, 28, 6985-6996.	3.5	66
33	Functionality of egg white proteins as affected by high intensity ultrasound. Food Hydrocolloids, 2012, 29, 308-316.	10.7	154
34	Magnetic and elastic properties of CoFe2O4- polydimethylsiloxane magnetically oriented elastomer nanocomposites. Journal of Applied Physics, 2011, 110, 043920.	2.5	53
35	Impact of phase separation of whey proteins/hydroxypropylmethylcellulose mixtures on gelation dynamics and gels properties. Food Hydrocolloids, 2010, 24, 641-651.	10.7	20
36	Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocolloids, 2009, 23, 1089-1095.	10.7	65

Oscar E Pérez

#	Article	lF	CITATIONS
37	Hydroxypropylmethylcellulose surface activity at equilibrium and adsorption dynamics at the air–water and oil–water interfaces. Food Hydrocolloids, 2009, 23, 2359-2368.	10.7	64
38	Surface dilatational properties of whey protein and hydroxypropyl-methyl-cellulose mixed systems at the air–water interface. Journal of Food Engineering, 2009, 94, 274-282.	5.2	28
39	Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air–water interface. Journal of Colloid and Interface Science, 2009, 336, 485-496.	9.4	34
40	Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface. Food Hydrocolloids, 2008, 22, 387-402.	10.7	67
41	Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin. Food Hydrocolloids, 2007, 21, 1344-1354.	10.7	46
42	Adsorption dynamics and surface activity at equilibrium of whey proteins and hydroxypropyl–methyl–cellulose mixtures at the air-water interface. Food Hydrocolloids, 2007, 21, 794-803.	10.7	42
43	Effect of ground corn steeping on starch properties. European Food Research and Technology, 2006, 222, 194-200.	3.3	10
44	Thermodynamic and Dynamic Characteristics of Hydroxypropylmethylcellulose Adsorbed Films at the Airâ^'Water Interface. Biomacromolecules, 2006, 7, 388-393.	5.4	41
45	Gelation and structural characteristics of incompatible whey proteins/hydroxypropylmethylcellulose mixtures. Food Hydrocolloids, 2006, 20, 966-974.	10.7	44
46	Effect of Steeping Corn with Lactic Acid on Starch Properties. Cereal Chemistry, 2004, 81, 10-14.	2.2	32
47	Thermal transitions of gluten-free doughs as affected by water, egg white and hydroxypropylmethylcellulose. Thermochimica Acta, 2004, 411, 81-89.	2.7	36
48	Pulsed electric fields effects on the molecular structure and gelation of β-lactoglobulin concentrate and egg white. Food Research International, 2004, 37, 102-110.	6.2	163
49	Effect of steeping time on the starch properties from ground whole corn. Journal of Food Engineering, 2003, 60, 281-287.	5.2	14