Martin MilaniÄ•

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6330396/publications.pdf
Version: 2024-02-01


```
1 Complexity of independent set reconfigurability problems. Theoretical Computer Science, 2012, 439,
    9-15.
```

2 Recent developments on graphs of bounded clique-width. Discrete Applied Mathematics, 2009, 157, 2747-2761.
3 A polynomial algorithm to find an independent set of maximum weight in a fork-free graph. Journal of
Discrete Algorithms, 2008, 6, 595-604.
0.7

82

4 Shortest paths between shortest paths. Theoretical Computer Science, 2011, 412, 5205-5210.
$5 \quad$ Latency-bounded target set selection in social networks. Theoretical Computer Science, 2014, 535, 1-15.
0.5

40

6 Spread of influence in weighted networks under time and budget constraints. Theoretical Computer
$7 \quad$ Dominating sequences in graphs. Discrete Mathematics, 2014, 336, 22-36.
0.4
23

8 On the approximability and exact algorithms for vector domination and related problems in graphs.
Discrete Applied Mathematics, 2013, 161, 750-767.
$0.5 \quad 22$

9 Hereditary Efficiently Dominatable Graphs. Journal of Graph Theory, 2013, 73, 400-424.
0.5

21

10 Polynomial-time algorithms for weighted efficient domination problems in AT-free graphs and dually chordal graphs. Information Processing Letters, 2015, 115, 256-262.
0.4

11 Graphs of separability at most 2. Discrete Applied Mathematics, 2012, 160, 685-696.
0.5

19

12 Computing square roots of trivially perfect and threshold graphs. Discrete Applied Mathematics, 2013,
0.5

18

13 Graphs Without Large Apples and the Maximum Weight Independent Set Problem. Graphs and
$0.2 \quad 18$

Combinatorics, 2014, 30, 395-410.

On the Maximum Independent Set Problem in Subclasses of Planar Graphs. Journal of Graph Algorithms and Applications, 2010, 14, 269-286.
0.4

18
17 On finding augmenting graphs. Discrete Applied Mathematics, 2008, 156, 2517-2529.

\#	Article	IF	Citations
19	Domination parameters with number <mml:math xmins:mml="http:/\|www.w3.org/1998/Math/MathML" id="mml720" display="inline" overflow="scroll" altimg="si482.gif">mml:mn2</mml:mn></mml:math>: Interrelations and algorithmic consequences. Discrete Applied Mathematics, 2018, 235, 23-50.	0.5	14
20	Complexity results for equistable graphs and related classes. Annals of Operations Research, 2011, 188, 359-370.	2.6	13
21	Equistable graphs, general partition graphs, triangle graphs, and graph products. Discrete Applied Mathematics, 2011, 159, 1148-1159.	0.5	12
22	Vertex-transitive CIS graphs. European Journal of Combinatorics, 2015, 44, 87-98.	0.5	12
23	New Polynomial Cases of the Weighted Efficient Domination Problem. Lecture Notes in Computer Science, 2013, , 195-206.	1.0	12
24	Competitive Boolean function evaluation: Beyond monotonicity, and the symmetric case. Discrete Applied Mathematics, 2011, 159, 1070-1078.	0.5	11
25	Graph classes with and without powers of bounded clique-width. Discrete Applied Mathematics, 2016, 199, 3-15.	0.5	11
26	The Maximum Independent Set Problem in Planar Graphs. Lecture Notes in Computer Science, 2008, , 96-107.	1.0	11
27	A characterization of line graphs that are squares of graphs. Discrete Applied Mathematics, 2014, 173, 83-91.	0.5	10
28	Set graphs. II. Complexity of set graph recognition and similar problems. Theoretical Computer Science, 2014, 547, 70-81.	0.5	10
29	Group irregularity strength of connected graphs. Journal of Combinatorial Optimization, 2015, 30, 1-17.	0.8	10
30	Equistarable Graphs and Counterexamples to Three Conjectures on Equistable Graphs. Journal of Graph Theory, 2017, 84, 536-551.	0.5	9
31	Weighted lambda superstrings applied to vaccine design. PLoS ONE, 2019, 14, e0211714.	1.1	9
32	Latency-Bounded Target Set Selection in Social Networks. Lecture Notes in Computer Science, 2013, 65-77.	1.0	9
33	Set graphs. I. Hereditarily finite sets and extensional acyclic orientations. Discrete Applied Mathematics, 2013, 161, 677-690.	0.5	8

```
37 A three-person deterministic graphical game without Nash equilibria. Discrete Applied Mathematics,
2018, 243, 21-38.
```

38 On the Recognition of k-Equistable Graphs. Lecture Notes in Computer Science, 2012, , 286-296.
$1.0 \quad 7$

39 Partial Characterizations of 1â€Perfectly Orientable Graphs. Journal of Graph Theory, 2017, 85, 378-394.
 $0.5 \quad 6$

$40 \quad$ Graphs vertex-partitionable into strong cliques. Discrete Mathematics, 2018, 341, 1392-1405.
$0.4 \quad 6$
A combinatorial approach to the design of vaccines. Journal of Mathematical Biology, 2015, 70,
$1327-1358$.
$0.8 \quad 5$

42 New algorithms for weighted k-domination and total k-domination problems in proper interval
$0.5 \quad 5$
graphs. Theoretical Computer Science, 2019, 795, 128-141.

Linear separation of connected dominating sets in graphs. Ars Mathematica Contemporanea, 2019, 16,
487-525.

Structural Identifiability in Low-Rank Matrix Factorization. Algorithmica, 2010, 56, 313-332.
1.0

Resilience and optimization of identifiable bipartite graphs. Discrete Applied Mathematics, 2013, 161, 593-603.

1-perfectly orientable K4-minor-free and outerplanar graphs. Discrete Applied Mathematics, 2018, 248, 33-45.
55 Graphs whose complement and square are isomorphic. Discrete Mathematics, 2014, 327, 62-75.

57	On the readability of overlap digraphs. Discrete Applied Mathematics, 2016, 205, 35-44.	0.5

<mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML" id="mml25" display="inline"
58 overflow="scroll" altimg="si1.gif">mml:mn1</mml:mn></mml:math>-perfectly orientable graphs and
0.43 graph products. Discrete Mathematics, 2017, 340, 1727-1737.

59 Detecting strong cliques. Discrete Mathematics, 2019, 342, 2738-2750.
0.43

60 Strong cliques in diamond-free graphs. Theoretical Computer Science, 2021, 858, 49-63.
0.53

Finding a Perfect Phylogeny from Mixed Tumor Samples. Lecture Notes in Computer Science, 2015, ,
$80-92$.

Shifting paths to avoidable ones. Journal of Graph Theory, 2022, 100, 69-83.
0.5

3

63 The plane-width of graphs. Journal of Graph Theory, 2011, 68, 229-245.
0.5

2

64 Vector connectivity in graphs. Networks, 2014, 63, 277-285.
1.6

2

65 Improved Algorithms for k-Domination and Total k-Domination in Proper Interval Graphs. Lecture
Notes in Computer Science, 2018, , 290-302.
$1.0 \quad 2$

66 A Characterization of Claw-free CIS Graphs and New Results on the Order of CIS Graphs. Electronic Notes in Theoretical Computer Science, 2019, 346, 15-27.
$0.9 \quad 2$

Complexity and algorithms for constant diameter augmentation problems. Theoretical Computer
$0.5 \quad 2$
$67 \quad$ Science, 2022, 904, 15-26.

Linear Separation of Total Dominating Sets in Graphs. Lecture Notes in Computer Science, 2013, , 165-176.
81 The Minimum Conflict-Free Row Split Problem Revisited. Lecture Notes in Computer Science, 2017, , 303-315.

On the complexity of the identifiable subgraph problem, revisited. Discrete Applied Mathematics, 2017,
226, 78-86.
0.4

0

86 Bipartite graphs of small readability. Theoretical Computer Science, 2020, 806, 402-415.
0

87 Mind the independence gap. Discrete Mathematics, 2020, 343, 111943.

0.4

0

