Stephen E Humphries

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6329851/stephen-e-humphries-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

162 19,432 51 139 h-index g-index citations papers 7.6 5.58 171 23,779 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
162	LDL-C Concentrations and the 12-SNP LDL-C Score for Polygenic Hypercholesterolaemia in Self-Reported South Asian, Black and Caribbean Participants of the UK Biobank <i>Frontiers in Genetics</i> , 2022 , 13, 845498	4.5	2
161	Inborn Errors of Lipoprotein Metabolism Presenting in Childhood 2022 , 677-691		
160	The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification <i>Genetics in Medicine</i> , 2021 ,	8.1	6
159	Genetic testing for Familial Hypercholesterolaemia - Past, Present and Future. <i>Journal of Lipid Research</i> , 2021 , 100139	6.3	1
158	Intake of food rich in saturated fat in relation to subclinical atherosclerosis and potential modulating effects from single genetic variants. <i>Scientific Reports</i> , 2021 , 11, 7866	4.9	O
157	Alcohol consumption in relation to carotid subclinical atherosclerosis and its progression: results from a European longitudinal multicentre study. <i>European Journal of Nutrition</i> , 2021 , 60, 123-134	5.2	1
156	The overlap of genetic susceptibility to schizophrenia and cardiometabolic disease can be used to identify metabolically different groups of individuals. <i>Scientific Reports</i> , 2021 , 11, 632	4.9	4
155	Comparison of the mutation spectrum and association with pre and post treatment lipid measures of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. <i>Atherosclerosis</i> , 2021 , 319, 108-117	3.1	5
154	Case-finding and genetic testing for familial hypercholesterolaemia in primary care. <i>Heart</i> , 2021 , 107, 1956-1961	5.1	1
153	Analysis of the genetic variants associated with circulating levels of sgp130. Results from the IMPROVE study. <i>Genes and Immunity</i> , 2020 , 21, 100-108	4.4	3
152	Higher Responsiveness to Rosuvastatin in Polygenic versus Monogenic Hypercholesterolaemia: A Propensity Score Analysis. <i>Life</i> , 2020 , 10,	3	4
151	The familial hypercholesterolaemia phenotype: Monogenic familial hypercholesterolaemia, polygenic hypercholesterolaemia and other causes. <i>Clinical Genetics</i> , 2020 , 97, 457-466	4	15
150	Comparison of the characteristics at diagnosis and treatment of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. <i>Atherosclerosis</i> , 2020 , 292, 178-187	3.1	17
149	PCSK6 Is a Key Protease in the Control of Smooth Muscle Cell Function in Vascular Remodeling. <i>Circulation Research</i> , 2020 , 126, 571-585	15.7	12
148	Non-HDL or LDL cholesterol in heterozygous familial hypercholesterolaemia: findings of the Simon Broome Register. <i>Current Opinion in Lipidology</i> , 2020 , 31, 167-175	4.4	2
147	Sex differences in cardiovascular morbidity associated with familial hypercholesterolaemia: A retrospective cohort study of the UK Simon Broome register linked to national hospital records. <i>Atherosclerosis</i> , 2020 , 315, 131-137	3.1	4
146	Management of familial hypercholesterolaemia in childhood. Current Opinion in Pediatrics, 2020, 32, 63	3-5640	1

(2018-2019)

145	Current management of children and young people with heterozygous familial hypercholesterolaemia - HEART UK statement of care. <i>Atherosclerosis</i> , 2019 , 290, 1-8	3.1	32	
144	Risk of cardiovascular disease outcomes in primary care subjects with familial hypercholesterolaemia: A cohort study. <i>Atherosclerosis</i> , 2019 , 287, 8-15	3.1	17	
143	Genetic variation in CADM2 as a link between psychological traits and obesity. <i>Scientific Reports</i> , 2019 , 9, 7339	4.9	18	
142	Polygenic Hypercholesterolemia and Cardiovascular Disease Risk. <i>Current Cardiology Reports</i> , 2019 , 21, 43	4.2	21	
141	Data on the association between a simplified Mediterranean diet score and the incidence of combined, cardio and cerebro vascular events. <i>Data in Brief</i> , 2019 , 23, 103789	1.2		
140	Estimation of the prevalence of cholesteryl ester storage disorder in a cohort of patients with clinical features of familial hypercholesterolaemia. <i>Annals of Clinical Biochemistry</i> , 2019 , 56, 112-117	2.2	3	
139	Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9. <i>BMC Cardiovascular Disorders</i> , 2019 , 19, 240	2.3	8	
138	Familial hypercholesterolaemia: what new?. <i>Paediatrics and Child Health (United Kingdom)</i> , 2019 , 29, 127-136	0.6	O	
137	Statins for children with familial hypercholesterolemia. <i>The Cochrane Library</i> , 2019 , 2019,	5.2	19	
136	Coronary heart disease mortality in severe vs. non-severe familial hypercholesterolaemia in the Simon Broome Register. <i>Atherosclerosis</i> , 2019 , 281, 207-212	3.1	23	
135	A priori-defined Mediterranean-like dietary pattern predicts cardiovascular events better in north Europe than in Mediterranean countries. <i>International Journal of Cardiology</i> , 2019 , 282, 88-92	3.2	7	
134	Effect of Coronary Artery Disease risk SNPs on serum cytokine levels and cytokine imbalance in Premature Coronary Artery Disease. <i>Cytokine</i> , 2019 , 122, 154060	4	6	
133	Association of lifelong occupation and educational level with subclinical atherosclerosis in different European regions. Results from the IMPROVE study. <i>Atherosclerosis</i> , 2018 , 269, 129-137	3.1	5	
132	Universal screening at age 1-2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK: A cost-utility analysis. <i>Atherosclerosis</i> , 2018 , 275, 434-443	3.1	22	
131	Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies. <i>Scientific Reports</i> , 2018 , 8, 8620	4.9	32	
130	Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm: A Meta-analysis. <i>JAMA Cardiology</i> , 2018 , 3, 26-33	16.2	44	
129	The UK Paediatric Familial Hypercholesterolaemia Register: Statin-related safety and 1-year growth data. <i>Journal of Clinical Lipidology</i> , 2018 , 12, 25-32	4.9	30	
128	Increased Levels of Circulating Fatty Acids Are Associated with Protective Effects against Future Cardiovascular Events in Nondiabetics. <i>Journal of Proteome Research</i> , 2018 , 17, 870-878	5.6	9	

127	GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. <i>Nature Communications</i> , 2018 , 9, 5141	17.4	64
126	Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia. <i>Atherosclerosis</i> , 2018 , 277, 457-463	3.1	28
125	ClinVar database of global familial hypercholesterolemia-associated DNA variants. <i>Human Mutation</i> , 2018 , 39, 1631-1640	4.7	55
124	Cost-utility analysis of searching electronic health records and cascade testing to identify and diagnose familial hypercholesterolaemia in England and Wales. <i>Atherosclerosis</i> , 2018 , 275, 80-87	3.1	7
123	Influence of cytokine gene polymorphisms on proinflammatory/anti-inflammatory cytokine imbalance in premature coronary artery disease. <i>Postgraduate Medical Journal</i> , 2017 , 93, 209-214	2	9
122	Genetics of CHD in 2016: Common and rare genetic variants and risk of CHD. <i>Nature Reviews Cardiology</i> , 2017 , 14, 73-74	14.8	7
121	Molecular genetics of familial hypercholesterolemia in Israel-revisited. <i>Atherosclerosis</i> , 2017 , 257, 55-63	3.1	16
120	Common variants in the genes of triglyceride and HDL-C metabolism lack association with coronary artery disease in the Pakistani subjects. <i>Lipids in Health and Disease</i> , 2017 , 16, 24	4.4	12
119	Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants. <i>Atherosclerosis</i> , 2017 , 258, 1-7	3.1	17
118	Genetic Architecture of Familial Hypercholesterolaemia. <i>Current Cardiology Reports</i> , 2017 , 19, 44	4.2	57
117	Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus: A Mendelian Randomization Analysis. <i>Circulation</i> , 2017 , 135, 2373-2388	16.7	182
116	Identifying low density lipoprotein cholesterol associated variants in the Annexin A2 (ANXA2) gene. <i>Atherosclerosis</i> , 2017 , 261, 60-68	3.1	8
115	PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. <i>Lancet Diabetes and Endocrinology,the</i> , 2017 , 5, 97-105	18.1	225
114	Carotid plaque-thickness and common carotid IMT show additive value in cardiovascular risk prediction and reclassification. <i>Atherosclerosis</i> , 2017 , 263, 412-419	3.1	39
113	Greater preclinical atherosclerosis in treated monogenic familial hypercholesterolemia vs. polygenic hypercholesterolemia. <i>Atherosclerosis</i> , 2017 , 263, 405-411	3.1	47
112	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. <i>Diabetes</i> , 2017 , 66, 288	&-2 ₉ 02	2 414
111	Screening for familial hypercholesterolaemia in childhood: Avon Longitudinal Study of Parents and Children (ALSPAC). <i>Atherosclerosis</i> , 2017 , 260, 47-55	3.1	11
110	Cost effectiveness of cascade testing for familial hypercholesterolaemia, based on data from familial hypercholesterolaemia services in the UK. <i>European Heart Journal</i> , 2017 , 38, 1832-1839	9.5	58

(2016-2017)

109	Applicability of the low-density lipoprotein cholesterol gene score in a South European population. <i>Atherosclerosis</i> , 2017 , 263, e99-e100	3.1	2
108	How close are we to implementing a genetic risk score for coronary heart disease?. <i>Expert Review of Molecular Diagnostics</i> , 2017 , 17, 905-915	3.8	6
107	The UK Paediatric Familial Hypercholesterolaemia Register: preliminary data. <i>Archives of Disease in Childhood</i> , 2017 , 102, 255-260	2.2	29
106	Plasma Concentrations of Afamin Are Associated With Prevalent and Incident Type 2 Diabetes: A Pooled Analysis in More Than 20,000 Individuals. <i>Diabetes Care</i> , 2017 , 40, 1386-1393	14.6	39
105	Statins for children with familial hypercholesterolemia. <i>The Cochrane Library</i> , 2017 , 7, CD006401	5.2	27
104	The UCL low-density lipoprotein receptor gene variant database: pathogenicity update. <i>Journal of Medical Genetics</i> , 2017 , 54, 217-223	5.8	60
103	Functional Analysis of the Coronary Heart Disease Risk Locus on Chromosome 21q22. <i>Disease Markers</i> , 2017 , 2017, 1096916	3.2	4
102	Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. <i>PLoS Genetics</i> , 2017 , 13, e1006706	6	102
101	Identification of a novel proinsulin-associated SNP and demonstration that proinsulin is unlikely to be a causal factor in subclinical vascular remodelling using Mendelian randomisation. <i>Atherosclerosis</i> , 2017 , 266, 196-204	3.1	2
100	Variant rs10911021 that associates with coronary heart disease in type 2 diabetes, is associated with lower concentrations of circulating HDL cholesterol and large HDL particles but not with amino acids. <i>Cardiovascular Diabetology</i> , 2016 , 15, 115	8.7	9
99	Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. <i>BioEssays</i> , 2016 , 38 Suppl 1, S107-18	4.1	7
98	A 19-SNP coronary heart disease gene score profile in subjects with type 2 diabetes: the coronary heart disease risk in type 2 diabetes (CoRDia study) study baseline characteristics. <i>Cardiovascular Diabetology</i> , 2016 , 15, 141	8.7	6
97	Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. <i>Lancet Diabetes and Endocrinology,the</i> , 2016 , 4, 850-61	18.1	215
96	Post-GWAS methodologies for localisation of functional non-coding variants: ANGPTL3. <i>Atherosclerosis</i> , 2016 , 246, 193-201	3.1	10
95	Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. <i>Lancet Diabetes and Endocrinology,the</i> , 2016 , 4, 327-36	18.1	100
94	Influence of Genetic Risk Factors on Coronary Heart Disease Occurrence in Afro-Caribbeans. <i>Canadian Journal of Cardiology</i> , 2016 , 32, 978-85	3.8	18
93	Effect of six type II diabetes susceptibility loci and an FTO variant on obesity in Pakistani subjects. <i>European Journal of Human Genetics</i> , 2016 , 24, 903-10	5.3	22
92	Circulating Apolipoprotein E Concentration and Cardiovascular Disease Risk: Meta-analysis of Results from Three Studies. <i>PLoS Medicine</i> , 2016 , 13, e1002146	11.6	27

91	Identification of the Functional Variant(s) that Explain the Low-Density Lipoprotein Receptor (LDLR) GWAS SNP rs6511720 Association with Lower LDL-C and Risk of CHD. <i>PLoS ONE</i> , 2016 , 11, e016	7876	17
90	Genome-Wide DNA Methylation in Mixed Ancestry Individuals with Diabetes and Prediabetes from South Africa. <i>International Journal of Endocrinology</i> , 2016 , 2016, 3172093	2.7	9
89	Variants Within TSC2 Exons 25 and 31 Are Very Unlikely to Cause Clinically Diagnosable Tuberous Sclerosis. <i>Human Mutation</i> , 2016 , 37, 364-70	4.7	14
88	Cardiovascular risk stratification in familial hypercholesterolaemia. <i>Heart</i> , 2016 , 102, 1003-8	5.1	38
87	Marginal role for 53 common genetic variants in cardiovascular disease prediction. <i>Heart</i> , 2016 , 102, 1640-7	5.1	23
86	The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. <i>Metabolism:</i> Clinical and Experimental, 2016 , 65, 48-53	12.7	20
85	Telomere length, antioxidant status and incidence of ischaemic heart disease in type 2 diabetes. <i>International Journal of Cardiology</i> , 2016 , 216, 159-64	3.2	19
84	Genetic loci on chromosome 5 are associated with circulating levels of interleukin-5 and eosinophil count in a European population with high risk for cardiovascular disease. <i>Cytokine</i> , 2016 , 81, 1-9	4	11
83	Soluble CD93 Is Involved in Metabolic Dysregulation but Does Not Influence Carotid Intima-Media Thickness. <i>Diabetes</i> , 2016 , 65, 2888-99	0.9	6
82	Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. <i>JAMA Cardiology</i> , 2016 , 1, 692-9	16.2	168
81	Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. <i>Inside the Cell</i> , 2016 , 1, 70-81		2
80	Improving detection of familial hypercholesterolaemia in primary care using electronic audit and nurse-led clinics. <i>Journal of Evaluation in Clinical Practice</i> , 2016 , 22, 341-8	2.5	20
79	Improving identification of familial hypercholesterolaemia in primary care: derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT). <i>Atherosclerosis</i> , 2015 , 238, 336-43	3.1	65
78	A genome-wide association study identifies multiple loci for variation in human ear morphology. <i>Nature Communications</i> , 2015 , 6, 7500	17.4	42
77	Mendelian randomization of blood lipids for coronary heart disease. <i>European Heart Journal</i> , 2015 , 36, 539-50	9.5	417
76	Comparison of coronary heart disease genetic assessment with conventional cardiovascular risk assessment in primary care: reflections on a feasibility study. <i>Primary Health Care Research and Development</i> , 2015 , 16, 607-17	1.6	1
75	Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. <i>European Heart Journal</i> , 2015 , 36, 2425-37	9.5	430
74	Sex-Specific Effects of Adiponectin on Carotid Intima-Media Thickness and Incident Cardiovascular Disease. <i>Journal of the American Heart Association</i> , 2015 , 4, e001853	6	25

73	Functional Analysis of a Carotid Intima-Media Thickness Locus Implicates BCAR1 and Suggests a Causal Variant. <i>Circulation: Cardiovascular Genetics</i> , 2015 , 8, 696-706		12
72	The UK10K project identifies rare variants in health and disease. <i>Nature</i> , 2015 , 526, 82-90	50.4	776
71	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. <i>Nature Genetics</i> , 2015 , 47, 1415-25	36.3	292
70	Functional analysis of four LDLR 5'UTR and promoter variants in patients with familial hypercholesterolaemia. <i>European Journal of Human Genetics</i> , 2015 , 23, 790-5	5.3	17
69	Sixty-five common genetic variants and prediction of type 2 diabetes. <i>Diabetes</i> , 2015 , 64, 1830-40	0.9	76
68	Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries. <i>Clinical Chemistry</i> , 2015 , 61, 231-8	5.5	130
67	Identifying genetic risk variants for coronary heart disease in familial hypercholesterolemia: an extreme genetics approach. <i>European Journal of Human Genetics</i> , 2015 , 23, 381-7	5.3	10
66	HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. <i>Lancet, The</i> , 2015 , 385, 351-61	40	409
65	Effectiveness of a self-management intervention with personalised genetic and lifestyle-related risk information on coronary heart disease and diabetes-related risk in type 2 diabetes (CoRDia): study protocol for a randomised controlled trial. <i>Trials</i> , 2015 , 16, 547	2.8	8
64	Demonstration of the presence of the "deleted" MIR122 gene in HepG2 cells. PLoS ONE, 2015, 10, e012	22;471	5
63	Demonstration of the presence of the "deleted" MIR122 gene in HepG2 cells. <i>PLoS ONE</i> , 2015 , 10, e012 Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. <i>PLoS ONE</i> , 2015 , 10, e0125876	22 47 1 3·7	5
	Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. <i>PLoS ONE</i> ,	<u> </u>	
63	Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. <i>PLoS ONE</i> , 2015 , 10, e0125876 Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged	3.7	14
63	Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. <i>PLoS ONE</i> , 2015 , 10, e0125876 Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged Men and in the Pakistani Population. <i>PLoS ONE</i> , 2015 , 10, e0130754 Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 Diabetes. <i>PLoS</i>	3·7 3·7	14
63 62 61	Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. <i>PLoS ONE</i> , 2015 , 10, e0125876 Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged Men and in the Pakistani Population. <i>PLoS ONE</i> , 2015 , 10, e0130754 Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 Diabetes. <i>PLoS ONE</i> , 2015 , 10, e0124062	3·7 3·7 3·7	14 18 9
63 62 61	Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. <i>PLoS ONE</i> , 2015 , 10, e0125876 Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged Men and in the Pakistani Population. <i>PLoS ONE</i> , 2015 , 10, e0130754 Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 Diabetes. <i>PLoS ONE</i> , 2015 , 10, e0124062 New genetic loci link adipose and insulin biology to body fat distribution. <i>Nature</i> , 2015 , 518, 187-196	3·7 3·7 3·7 50·4	14 18 9
63 62 61 60	Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. <i>PLoS ONE</i> , 2015 , 10, e0125876 Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged Men and in the Pakistani Population. <i>PLoS ONE</i> , 2015 , 10, e0130754 Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 Diabetes. <i>PLoS ONE</i> , 2015 , 10, e0124062 New genetic loci link adipose and insulin biology to body fat distribution. <i>Nature</i> , 2015 , 518, 187-196 Genetic studies of body mass index yield new insights for obesity biology. <i>Nature</i> , 2015 , 518, 197-206 PLA2G10 Gene Variants, sPLA2 Activity, and Coronary Heart Disease Risk. <i>Circulation</i> :	3·7 3·7 3·7 50·4	14 18 9 920 2687

55	Analysis of the role of interleukin 6 receptor haplotypes in the regulation of circulating levels of inflammatory biomarkers and risk of coronary heart disease. <i>PLoS ONE</i> , 2015 , 10, e0119980	3.7	17
54	Plasma autoantibodies against apolipoprotein B-100 peptide 210 in subclinical atherosclerosis. <i>Atherosclerosis</i> , 2014 , 232, 242-8	3.1	22
53	Low levels of IgM antibodies against phosphorylcholine are associated with fast carotid intima media thickness progression and cardiovascular risk in men. <i>Atherosclerosis</i> , 2014 , 236, 394-9	3.1	19
52	A systematic review and meta-analysis of 130,000 individuals shows smoking does not modify the association of APOE genotype on risk of coronary heart disease. <i>Atherosclerosis</i> , 2014 , 237, 5-12	3.1	24
51	A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans. <i>Nature Communications</i> , 2014 , 5, 4871	17.4	46
50	Defining the role of common variation in the genomic and biological architecture of adult human height. <i>Nature Genetics</i> , 2014 , 46, 1173-86	36.3	1339
49	A serum 25-hydroxyvitamin D concentration-associated genetic variant in DHCR7 interacts with type 2 diabetes status to influence subclinical atherosclerosis (measured by carotid intima-media thickness). <i>Diabetologia</i> , 2014 , 57, 1159-72	10.3	24
48	Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. <i>BMJ, The</i> , 2014 , 349, g4164	5.9	406
47	Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations. <i>Journal of Medical Genetics</i> , 2014 , 51, 537-44	5.8	77
46	Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. <i>Lancet Diabetes and Endocrinology,the</i> , 2014 , 2, 719-29	18.1	250
45	The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. <i>Lancet Diabetes and Endocrinology,the</i> , 2014 , 2, 655-66	18.1	357
44	Human genetic evidence for involvement of CD137 in atherosclerosis. <i>Molecular Medicine</i> , 2014 , 20, 45	6-66-5	8
43	Clinical utility gene card for: hyperlipoproteinemia, TYPE II. European Journal of Human Genetics, 2014 , 22,	5.3	7
42	The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. <i>Current Opinion in Lipidology</i> , 2014 , 25, 274-81	4.4	24
41	Common genetic determinants of lung function, subclinical atherosclerosis and risk of coronary artery disease. <i>PLoS ONE</i> , 2014 , 9, e104082	3.7	30
40	Association of TLL1 gene polymorphism (rs1503298, T > C) with coronary heart disease in PREDICT, UDACS and ED cohorts. <i>Journal of the College of Physicians and SurgeonsPakistan: JCPSP</i> , 2014 , 24, 61.	5-9 ^{.7}	2
39	Statin treatment of children with familial hypercholesterolemiatrying to balance incomplete evidence of long-term safety and clinical accountability: are we approaching a consensus?. <i>Atherosclerosis</i> , 2013 , 226, 315-20	3.1	48
38	Analysis of the frequency and spectrum of mutations recognised to cause familial hypercholesterolaemia in routine clinical practice in a UK specialist hospital lipid clinic. <i>Atherosclerosis</i> , 2013 , 229, 161-8	3.1	65

37	Discovery and refinement of loci associated with lipid levels. <i>Nature Genetics</i> , 2013 , 45, 1274-1283	36.3	1904
36	Secretory phospholipase A(2)-IIA and cardiovascular disease: a mendelian randomization study. <i>Journal of the American College of Cardiology</i> , 2013 , 62, 1966-1976	15.1	91
35	Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. <i>Lancet, The</i> , 2013 , 381, 1293-301	40	376
34	Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. <i>European Heart Journal</i> , 2013 , 34, 3478-90a	9.5	1551
33	Population genomics of cardiometabolic traits: design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium. <i>PLoS ONE</i> , 2013 , 8, e7	13:45	33
32	Association of TERC and OBFC1 haplotypes with mean leukocyte telomere length and risk for coronary heart disease. <i>PLoS ONE</i> , 2013 , 8, e83122	3.7	34
31	The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. <i>Lancet, The</i> , 2012 , 379, 1214-24	40	658
30	Paraoxonase-1 Is Not Associated with Coronary Artery Calcification in Type 2 Diabetes: Results from the PREDICT Study. <i>Disease Markers</i> , 2012 , 33, 101-112	3.2	10
29	Cochrane Review: Statins for children with familial hypercholesterolemia. <i>Evidence-Based Child Health: A Cochrane Review Journal</i> , 2011 , 6, 1086-1129		1
28	Coronary heart disease risk prediction in the era of genome-wide association studies: current status and what the future holds. <i>Circulation</i> , 2010 , 121, 2235-48	16.7	49
27	Cross-sectional analysis of baseline data to identify the major determinants of carotid intima-media thickness in a European population: the IMPROVE study. <i>European Heart Journal</i> , 2010 , 31, 614-22	9.5	99
26	Identification and management of familial hypercholesterolaemia: what does it mean to primary care?. <i>British Journal of General Practice</i> , 2009 , 59, 773-6	1.6	48
25	Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. <i>European Heart Journal</i> , 2008 , 29, 2625-33	9.5	321
24	Development of sensitive and specific age- and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. <i>Clinical Chemistry and Laboratory Medicine</i> , 2008 , 46, 791-803	5.9	109
23	Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men. <i>Clinical Chemistry</i> , 2007 , 53, 8-16	5.5	74
22	Mutational analysis in UK patients with a clinical diagnosis of familial hypercholesterolaemia: relationship with plasma lipid traits, heart disease risk and utility in relative tracing. <i>Journal of Molecular Medicine</i> , 2006 , 84, 203-14	5.5	55
21	Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. <i>Journal of Molecular Medicine</i> , 2006 , 84, 1005-14	5.5	112
20	Insight into the nature of the CRP-coronary event association using Mendelian randomization. <i>International Journal of Epidemiology</i> , 2006 , 35, 922-31	7.8	137

19	Genetic risk factors for stroke and carotid atherosclerosis: insights into pathophysiology from candidate gene approaches. <i>Lancet Neurology, The</i> , 2004 , 3, 227-35	24.1	179
18	Psychological impact of genetic testing for familial hypercholesterolemia within a previously aware population: a randomized controlled trial. <i>American Journal of Medical Genetics Part A</i> , 2004 , 128A, 285	-93	148
17	Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. <i>American Journal of Epidemiology</i> , 2004 , 160, 407-20	3.8	406
16	A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. <i>Atherosclerosis</i> , 2003 , 168, 1-14	3.1	426
15	Cost effectiveness analysis of different approaches of screening for familial hypercholesterolaemia. <i>BMJ, The</i> , 2002 , 324, 1303	5.9	146
14	Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2001 , 86, 2200-4	5.6	46
13	Epidemiological and genetic associations of activated factor XII concentration with factor VII activity, fibrinopeptide A concentration, and risk of coronary heart disease in men. <i>Circulation</i> , 2000 , 102, 2058-62	16.7	71
12	Linkage of the cholesteryl ester transfer protein (CETP) gene to LDL particle size: use of a novel tetranucleotide repeat within the CETP promoter. <i>Circulation</i> , 2000 , 101, 2461-6	16.7	62
11	ApoCIII gene variants modulate postprandial response to both glucose and fat tolerance tests. <i>Circulation</i> , 1999 , 99, 1872-7	16.7	77
10	Lipoprotein lipase gene variation is associated with a paternal history of premature coronary artery disease and fasting and postprandial plasma triglycerides: the European Atherosclerosis Research Study (EARS). <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 1998 , 18, 526-34	9.4	128
9	Simplified detection of a mutation causing familial hypercholesterolaemia throughout Britain: evidence for an origin in a common distant ancestor. <i>Annals of Clinical Biochemistry</i> , 1998 , 35 (Pt 2), 220	5- 35	1
8	Common founder mutation in the LDL receptor gene causing familial hypercholesterolaemia in the Icelandic population. <i>Human Mutation</i> , 1997 , 10, 36-44	4.7	30
7	Familial lipoprotein lipase (LPL) deficiency: a catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy. <i>Human Mutation</i> , 1997 , 10, 465-73	4.7	36
6	The use of a highly informative CA repeat polymorphism within the abetalipoproteinaemia locus (4q22-24). <i>Prenatal Diagnosis</i> , 1997 , 17, 1181-6	3.2	10
5	Lipoprotein lipase variants D9N and N291S are associated with increased plasma triglyceride and lower high-density lipoprotein cholesterol concentrations: studies in the fasting and postprandial states: the European Atherosclerosis Research Studies. <i>Circulation</i> , 1997 , 96, 733-40	16.7	74
4	The 10-Base-Pair Insertion in the Promoter of the Factor VII Gene Is not Associated with Lower Levels of Factor VI Ic in Afrocarribeans. <i>Thrombosis and Haemostasis</i> , 1997 , 77, 213-214	7	2
3	Familial lipoprotein lipase (LPL) deficiency: A catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy 1997 , 10, 465		4
2	Polymorphism in the promoter region of the apolipoprotein AI gene associated with differences in apolipoprotein AI levels: the European Atherosclerosis Research Study. <i>Genetic Epidemiology</i> , 1994 , 11, 265-80	2.6	57

The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification

1