Stephen E Humphries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6329851/publications.pdf Version: 2024-02-01

STEDHEN F HUMDHDIES

#	Article	IF	CITATIONS
1	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
2	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	9.4	2,641
3	Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society. European Heart Journal, 2013, 34, 3478-3490.	1.0	2,132
4	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	9.4	1,818
5	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
6	The UK10K project identifies rare variants in health and disease. Nature, 2015, 526, 82-90.	13.7	1,014
7	The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet, The, 2012, 379, 1214-1224.	6.3	886
8	Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. European Heart Journal, 2015, 36, 2425-2437.	1.0	644
9	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.3	615
10	Mendelian randomization of blood lipids for coronary heart disease. European Heart Journal, 2015, 36, 539-550.	1.0	567
11	HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet, The, 2015, 385, 351-361.	6.3	562
12	Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ, The, 2014, 349, g4164-g4164.	3.0	528
13	Genetic Causes of Monogenic Heterozygous Familial Hypercholesterolemia: A HuGE Prevalence Review. American Journal of Epidemiology, 2004, 160, 407-420.	1.6	518
14	A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis, 2003, 168, 1-14.	0.4	490
15	Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet, The, 2013, 381, 1293-1301.	6.3	485
16	The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes and Endocrinology,the, 2014, 2, 655-666.	5.5	473
17	Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. European Heart Journal, 2008, 29, 2625-2633.	1.0	391
18	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	9.4	365

#	Article	IF	CITATIONS
19	Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Lancet Diabetes and Endocrinology,the, 2016, 4, 850-861.	5.5	329
20	Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2014, 2, 719-729.	5.5	319
21	Causal Associations of Adiposity and Body Fat Distribution With Coronary Heart Disease, Stroke Subtypes, and Type 2 Diabetes Mellitus. Circulation, 2017, 135, 2373-2388.	1.6	304
22	PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2017, 5, 97-105.	5.5	298
23	Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. JAMA Cardiology, 2016, 1, 692.	3.0	233
24	Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genetics, 2017, 13, e1006706.	1.5	194
25	Genetic risk factors for stroke and carotid atherosclerosis: insights into pathophysiology from candidate gene approaches. Lancet Neurology, The, 2004, 3, 227-236.	4.9	193
26	Cost effectiveness analysis of different approaches of screening for familial hypercholesterolaemia. BMJ: British Medical Journal, 2002, 324, 1303-1303.	2.4	190
27	Psychological impact of genetic testing for familial hypercholesterolemia within a previously aware population: A randomized controlled trial. American Journal of Medical Genetics Part A, 2004, 128A, 285-293.	2.4	172
28	Refinement of Variant Selection for the LDL Cholesterol Genetic Risk Score in the Diagnosis of the Polygenic Form of Clinical Familial Hypercholesterolemia and Replication in Samples from 6 Countries. Clinical Chemistry, 2015, 61, 231-238.	1.5	166
29	Insight into the nature of the CRP–coronary event association using Mendelian randomization. International Journal of Epidemiology, 2006, 35, 922-931.	0.9	159
30	Lipoprotein Lipase Gene Variation Is Associated With a Paternal History of Premature Coronary Artery Disease and Fasting and Postprandial Plasma Triglycerides. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 526-534.	1.1	144
31	Development of sensitive and specific age- and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. Clinical Chemistry and Laboratory Medicine, 2008, 46, 791-803.	1.4	144
32	Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. Journal of Molecular Medicine, 2006, 84, 1005-1014.	1.7	131
33	Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes and Endocrinology,the, 2016, 4, 327-336.	5.5	122
34	GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nature Communications, 2018, 9, 5141.	5.8	119
35	Cross-sectional analysis of baseline data to identify the major determinants of carotid intima–media thickness in a European population: the IMPROVE study. European Heart Journal, 2010, 31, 614-622.	1.0	117
36	Secretory Phospholipase A2-IIA and Cardiovascular Disease. Journal of the American College of Cardiology, 2013, 62, 1966-1976.	1.2	115

#	Article	IF	CITATIONS
37	Whole exome sequencing of familial hypercholesterolaemia patients negative for <i>LDLR</i> / <i>APOB</i> / <i>PCSK9</i> mutations. Journal of Medical Genetics, 2014, 51, 537-544.	1.5	104
38	Cost effectiveness of cascade testing for familial hypercholesterolaemia, based on data from familial hypercholesterolaemia services in the UK. European Heart Journal, 2017, 38, 1832-1839.	1.0	97
39	Statins for children with familial hypercholesterolemia. The Cochrane Library, 2017, 7, CD006401.	1.5	94
40	Sixty-Five Common Genetic Variants and Prediction of Type 2 Diabetes. Diabetes, 2015, 64, 1830-1840.	0.3	91
41	Lipoprotein Lipase Variants D9N and N291S Are Associated With Increased Plasma Triglyceride and Lower High-Density Lipoprotein Cholesterol Concentrations. Circulation, 1997, 96, 733-740.	1.6	90
42	Analysis of the frequency and spectrum of mutations recognised to cause familial hypercholesterolaemia in routine clinical practice in a UK specialist hospital lipid clinic. Atherosclerosis, 2013, 229, 161-168.	0.4	85
43	ClinVar database of global familial hypercholesterolemiaâ€associated DNA variants. Human Mutation, 2018, 39, 1631-1640.	1.1	84
44	Improving identification of familial hypercholesterolaemia in primary care: Derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT). Atherosclerosis, 2015, 238, 336-343.	0.4	83
45	Candidate Gene Genotypes, Along with Conventional Risk Factor Assessment, Improve Estimation of Coronary Heart Disease Risk in Healthy UK Men. Clinical Chemistry, 2007, 53, 8-16.	1.5	82
46	Genetic Architecture of Familial Hypercholesterolaemia. Current Cardiology Reports, 2017, 19, 44.	1.3	82
47	ApoCIII Gene Variants Modulate Postprandial Response to Both Glucose and Fat Tolerance Tests. Circulation, 1999, 99, 1872-1877.	1.6	81
48	Epidemiological and Genetic Associations of Activated Factor XII Concentration With Factor VII Activity, Fibrinopeptide A Concentration, and Risk of Coronary Heart Disease in Men. Circulation, 2000, 102, 2058-2062.	1.6	81
49	A genome-wide association study identifies multiple loci for variation in human ear morphology. Nature Communications, 2015, 6, 7500.	5.8	80
50	The UCL low-density lipoprotein receptor gene variant database: pathogenicity update. Journal of Medical Genetics, 2017, 54, 217-223.	1.5	75
51	Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm. JAMA Cardiology, 2018, 3, 26.	3.0	75
52	Statin treatment of children with familial hypercholesterolemia – Trying to balance incomplete evidence of long-term safety and clinical accountability: Are we approaching a consensus?. Atherosclerosis, 2013, 226, 315-320.	0.4	74
53	Polymorphism in the promoter region of the apolipoprotein Al gene associated with differences in apolipoprotein Al levels: The European Atherosclerosis Research Study. Genetic Epidemiology, 1994, 11, 265-280.	0.6	69
54	Linkage of the Cholesteryl Ester Transfer Protein (CETP) Gene to LDL Particle Size. Circulation, 2000, 101, 2461-2466.	1.6	67

#	Article	IF	CITATIONS
55	Greater preclinical atherosclerosis in treated monogenic familial hypercholesterolemia vs. polygenic hypercholesterolemia. Atherosclerosis, 2017, 263, 405-411.	0.4	63
56	A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans. Nature Communications, 2014, 5, 4871.	5.8	62
57	Mutational analysis in UK patients with a clinical diagnosis of familial hypercholesterolaemia: relationship with plasma lipid traits, heart disease risk and utility in relative tracing. Journal of Molecular Medicine, 2006, 84, 203-214.	1.7	61
58	Carotid plaque-thickness and common carotid IMT show additive value in cardiovascular risk prediction and reclassification. Atherosclerosis, 2017, 263, 412-419.	0.4	61
59	Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies. Scientific Reports, 2018, 8, 8620.	1.6	61
60	Identification and management of familial hypercholesterolaemia: what does it mean to primary care?. British Journal of General Practice, 2009, 59, 773-778.	0.7	59
61	Cardiovascular risk stratification in familial hypercholesterolaemia. Heart, 2016, 102, 1003-1008.	1.2	59
62	Plasma Concentrations of Afamin Are Associated With Prevalent and Incident Type 2 Diabetes: A Pooled Analysis in More Than 20,000 Individuals. Diabetes Care, 2017, 40, 1386-1393.	4.3	59
63	Coronary Heart Disease Risk Prediction in the Era of Genome-Wide Association Studies. Circulation, 2010, 121, 2235-2248.	1.6	57
64	Universal screening at age 1–2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK: A cost-utility analysis. Atherosclerosis, 2018, 275, 434-443.	0.4	55
65	The Clinical Genome Resource (ClinGen) Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification. Genetics in Medicine, 2022, 24, 293-306.	1.1	53
66	Current management of children and young people with heterozygous familial hypercholesterolaemia - HEART UK statement of care. Atherosclerosis, 2019, 290, 1-8.	0.4	51
67	Angiotensin-I Converting Enzyme Genotype-Dependent Benefit from Hormone Replacement Therapy in Isometric Muscle Strength and Bone Mineral Density ¹ . Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2200-2204.	1.8	46
68	Genetic variation in CADM2 as a link between psychological traits and obesity. Scientific Reports, 2019, 9, 7339.	1.6	45
69	The UK Paediatric Familial Hypercholesterolaemia Register: preliminary data. Archives of Disease in Childhood, 2017, 102, 255-260.	1.0	42
70	Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia. Atherosclerosis, 2018, 277, 457-463.	0.4	42
71	Association of TERC and OBFC1 Haplotypes with Mean Leukocyte Telomere Length and Risk for Coronary Heart Disease. PLoS ONE, 2013, 8, e83122.	1.1	42
72	Comparison of the characteristics at diagnosis and treatment of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. Atherosclerosis, 2020, 292, 178-187.	0.4	41

#	Article	IF	CITATIONS
73	The UK Paediatric Familial Hypercholesterolaemia Register: Statin-related safety and 1-year growth data. Journal of Clinical Lipidology, 2018, 12, 25-32.	0.6	40
74	Statins for children with familial hypercholesterolemia. The Cochrane Library, 2019, 2019, .	1.5	40
75	Familial lipoprotein lipase (LPL) deficiency: A catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy. , 1997, 10, 465-473.		39
76	Population Genomics of Cardiometabolic Traits: Design of the University College London-London School of Hygiene and Tropical Medicine-Edinburgh-Bristol (UCLEB) Consortium. PLoS ONE, 2013, 8, e71345.	1.1	39
77	Polygenic Hypercholesterolemia and Cardiovascular Disease Risk. Current Cardiology Reports, 2019, 21, 43.	1.3	38
78	PCSK6 Is a Key Protease in the Control of Smooth Muscle Cell Function in Vascular Remodeling. Circulation Research, 2020, 126, 571-585.	2.0	38
79	Plasma IL-5 concentration and subclinical carotid atherosclerosis. Atherosclerosis, 2015, 239, 125-130.	0.4	36
80	Common Genetic Determinants of Lung Function, Subclinical Atherosclerosis and Risk of Coronary Artery Disease. PLoS ONE, 2014, 9, e104082.	1.1	36
81	Common founder mutation in the LDL receptor gene causing familial hypercholesterolaemia in the Icelandic population. , 1997, 10, 36-44.		35
82	Circulating Apolipoprotein E Concentration and Cardiovascular Disease Risk: Meta-analysis of Results from Three Studies. PLoS Medicine, 2016, 13, e1002146.	3.9	35
83	Sexâ€Specific Effects of Adiponectin on Carotid Intimaâ€Media Thickness and Incident Cardiovascular Disease. Journal of the American Heart Association, 2015, 4, e001853.	1.6	33
84	GWAS-identified loci for coronary heart disease are associated with intima-media thickness and plaque presence at the carotid artery bulb. Atherosclerosis, 2015, 239, 304-310.	0.4	31
85	Coronary heart disease mortality in severe vs. non-severe familial hypercholesterolaemia in the Simon Broome Register. Atherosclerosis, 2019, 281, 207-212.	0.4	31
86	The genetic architecture of the familial hyperlipidaemia syndromes. Current Opinion in Lipidology, 2014, 25, 274-281.	1.2	30
87	Improving detection of familial hypercholesterolaemia in primary care using electronic audit and nurseâ€led clinics. Journal of Evaluation in Clinical Practice, 2016, 22, 341-348.	0.9	28
88	Identification of the Functional Variant(s) that Explain the Low-Density Lipoprotein Receptor (LDLR) GWAS SNP rs6511720 Association with Lower LDL-C and Risk of CHD. PLoS ONE, 2016, 11, e0167676.	1.1	28
89	Plasma autoantibodies against apolipoprotein B-100 peptide 210 in subclinical atherosclerosis. Atherosclerosis, 2014, 232, 242-248.	0.4	27
90	A systematic review and meta-analysis of 130,000 individuals shows smoking does not modify the association of APOE genotype on risk of coronary heart disease. Atherosclerosis, 2014, 237, 5-12.	0.4	27

#	Article	IF	CITATIONS
91	Marginal role for 53 common genetic variants in cardiovascular disease prediction. Heart, 2016, 102, 1640-1647.	1.2	27
92	Telomere length, antioxidant status and incidence of ischaemic heart disease in type 2 diabetes. International Journal of Cardiology, 2016, 216, 159-164.	0.8	27
93	The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Metabolism: Clinical and Experimental, 2016, 65, 48-53.	1.5	26
94	Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants. Atherosclerosis, 2017, 258, 1-7.	0.4	26
95	Effect of six type II diabetes susceptibility loci and an FTO variant on obesity in Pakistani subjects. European Journal of Human Genetics, 2016, 24, 903-910.	1.4	25
96	A serum 25-hydroxyvitamin D concentration-associated genetic variant in DHCR7 interacts with type 2 diabetes status to influence subclinical atherosclerosis (measured by carotid intima–media) Tj ETQq0 0 0 rgBT	/Ozuerlock	1 @ 4f 50 537
97	Risk of cardiovascular disease outcomes in primary care subjects with familial hypercholesterolaemia: A cohort study. Atherosclerosis, 2019, 287, 8-15.	0.4	24
98	Low levels of IgM antibodies against phosphorylcholine are associated with fast carotid intima media thickness progression and cardiovascular risk in men. Atherosclerosis, 2014, 236, 394-399.	0.4	23
99	Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9. BMC Cardiovascular Disorders, 2019, 19, 240.	0.7	22
100	The familial hypercholesterolaemia phenotype: Monogenic familial hypercholesterolaemia, polygenic hypercholesterolaemia and other causes. Clinical Genetics, 2020, 97, 457-466.	1.0	22
101	Clinical Utility of a Coronary Heart Disease Risk Prediction Gene Score in UK Healthy Middle Aged Men and in the Pakistani Population. PLoS ONE, 2015, 10, e0130754.	1.1	21
102	Influence of Genetic Risk Factors on Coronary Heart Disease Occurrence in Afro-Caribbeans. Canadian Journal of Cardiology, 2016, 32, 978-985.	0.8	21
103	Screening for familial hypercholesterolaemia in childhood: Avon Longitudinal Study of Parents and Children (ALSPAC). Atherosclerosis, 2017, 260, 47-55.	0.4	21
104	Cost-utility analysis of searching electronic health records and cascade testing to identify and diagnose familial hypercholesterolaemia in England and Wales. Atherosclerosis, 2018, 275, 80-87.	0.4	21
105	Analysis of the Role of Interleukin 6 Receptor Haplotypes in the Regulation of Circulating Levels of Inflammatory Biomarkers and Risk of Coronary Heart Disease. PLoS ONE, 2015, 10, e0119980.	1.1	21
106	Common variants in the genes of triglyceride and HDL-C metabolism lack association with coronary artery disease in the Pakistani subjects. Lipids in Health and Disease, 2017, 16, 24.	1.2	20
107	Genetic testing for familial hypercholesterolemia—past, present, and future. Journal of Lipid Research, 2021, 62, 100139.	2.0	20
108	Molecular genetics of familial hypercholesterolemia in Israel–revisited. Atherosclerosis, 2017, 257, 55-63.	0.4	19

#	Article	IF	CITATIONS
109	Sex differences in cardiovascular morbidity associated with familial hypercholesterolaemia: A retrospective cohort study of the UK Simon Broome register linked to national hospital records. Atherosclerosis, 2020, 315, 131-137.	0.4	19
110	Functional analysis of four LDLR 5′UTR and promoter variants in patients with familial hypercholesterolaemia. European Journal of Human Genetics, 2015, 23, 790-795.	1.4	18
111	Identifying low density lipoprotein cholesterol associated variants in the Annexin A2 (ANXA2) gene. Atherosclerosis, 2017, 261, 60-68.	0.4	18
112	Comparison of the mutation spectrum and association with pre and post treatment lipid measures of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. Atherosclerosis, 2021, 319, 108-117.	0.4	18
113	PLA2G10 Gene Variants, sPLA2 Activity, and Coronary Heart Disease Risk. Circulation: Cardiovascular Genetics, 2015, 8, 356-362.	5.1	17
114	Functional Analysis of a Carotid Intima-Media Thickness Locus Implicates <i>BCAR1</i> and Suggests a Causal Variant. Circulation: Cardiovascular Genetics, 2015, 8, 696-706.	5.1	17
115	Variants Within <i>TSC2</i> Exons 25 and 31 Are Very Unlikely to Cause Clinically Diagnosable Tuberous Sclerosis. Human Mutation, 2016, 37, 364-370.	1.1	16
116	Networks in Coronary Heart Disease Genetics As a Step towards Systems Epidemiology. PLoS ONE, 2015, 10, e0125876.	1.1	15
117	Identifying genetic risk variants for coronary heart disease in familial hypercholesterolemia: an extreme genetics approach. European Journal of Human Genetics, 2015, 23, 381-387.	1.4	15
118	Post-GWAS methodologies for localisation of functional non-coding variants: ANGPTL3. Atherosclerosis, 2016, 246, 193-201.	0.4	15
119	Genome-Wide DNA Methylation in Mixed Ancestry Individuals with Diabetes and Prediabetes from South Africa. International Journal of Endocrinology, 2016, 2016, 1-11.	0.6	14
120	Soluble CD93 Is Involved in Metabolic Dysregulation but Does Not Influence Carotid Intima-Media Thickness. Diabetes, 2016, 65, 2888-2899.	0.3	14
121	Variant rs10911021 that associates with coronary heart disease in type 2 diabetes, is associated with lower concentrations of circulating HDL cholesterol and large HDL particles but not with amino acids. Cardiovascular Diabetology, 2016, 15, 115.	2.7	14
122	Influence of cytokine gene polymorphisms on proinflammatory/anti-inflammatory cytokine imbalance in premature coronary artery disease. Postgraduate Medical Journal, 2017, 93, 209-214.	0.9	13
123	Increased Levels of Circulating Fatty Acids Are Associated with Protective Effects against Future Cardiovascular Events in Nondiabetics. Journal of Proteome Research, 2018, 17, 870-878.	1.8	13
124	Effect of Coronary Artery Disease risk SNPs on serum cytokine levels and cytokine imbalance in Premature Coronary Artery Disease. Cytokine, 2019, 122, 154060.	1.4	13
125	Genetic loci on chromosome 5 are associated with circulating levels of interleukin-5 and eosinophil count in a European population with high risk for cardiovascular disease. Cytokine, 2016, 81, 1-9.	1.4	12
126	The use of a highly informative CA repeat polymorphism within the abetalipoproteinaemia locus		11

(4q22–24). , 1997, 17, 1181-1186.

11

#	Article	IF	CITATIONS
127	A priori-defined Mediterranean-like dietary pattern predicts cardiovascular events better in north Europe than in Mediterranean countries. International Journal of Cardiology, 2019, 282, 88-92.	0.8	11
128	Analysis of the genetic variants associated with circulating levels of sgp130. Results from the IMPROVE study. Genes and Immunity, 2020, 21, 100-108.	2.2	11
129	Clinical utility gene card for: Hyperlipoproteinemia, TYPE II. European Journal of Human Genetics, 2014, 22, 953-953.	1.4	10
130	Effectiveness of a self-management intervention with personalised genetic and lifestyle-related risk information on coronary heart disease and diabetes-related risk in type 2 diabetes (CoRDia): study protocol for a randomised controlled trial. Trials, 2015, 16, 547.	0.7	10
131	Effect of the PPARG2 Pro12Ala Polymorphism on Associations of Physical Activity and Sedentary Time with Markers of Insulin Sensitivity in Those with an Elevated Risk of Type 2 Diabetes. PLoS ONE, 2015, 10, e0124062.	1.1	10
132	Paraoxonase-1 Is Not Associated with Coronary Artery Calcification in Type 2 Diabetes: Results from the PREDICT Study. Disease Markers, 2012, 33, 101-112.	0.6	10
133	Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care. Open Heart, 2021, 8, e001752.	0.9	10
134	Alcohol consumption in relation to carotid subclinical atherosclerosis and its progression: results from a European longitudinal multicentre study. European Journal of Nutrition, 2021, 60, 123-134.	1.8	9
135	Case-finding and genetic testing for familial hypercholesterolaemia in primary care. Heart, 2021, 107, 1956-1961.	1.2	9
136	Higher Responsiveness to Rosuvastatin in Polygenic versus Monogenic Hypercholesterolemia: A Propensity Score Analysis. Life, 2020, 10, 73.	1.1	9
137	Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome. Circulation Research, 2022, 130, 80-95.	2.0	9
138	Cost-Effectiveness of Screening Algorithms for Familial Hypercholesterolaemia in Primary Care. Journal of Personalized Medicine, 2022, 12, 330.	1.1	9
139	Human Genetic Evidence for Involvement of CD137 in Atherosclerosis. Molecular Medicine, 2014, 20, 456-465.	1.9	8
140	A 19-SNP coronary heart disease gene score profile in subjects with type 2 diabetes: the coronary heart disease risk in type 2 diabetes (CoRDia study) study baseline characteristics. Cardiovascular Diabetology, 2016, 15, 141.	2.7	8
141	Common and rare genetic variants and risk of CHD. Nature Reviews Cardiology, 2017, 14, 73-74.	6.1	8
142	The overlap of genetic susceptibility to schizophrenia and cardiometabolic disease can be used to identify metabolically different groups of individuals. Scientific Reports, 2021, 11, 632.	1.6	8
143	Mitochondrial uncoupling proteins regulate angiotensinâ€converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. BioEssays, 2016, 38, S107-18.	1.2	7
144	Association of lifelong occupation and educational level with subclinical atherosclerosis in different European regions. Results fromÂthe IMPROVE study. Atherosclerosis, 2018, 269, 129-137.	0.4	7

#	Article	IF	CITATIONS
145	Demonstration of the Presence of the "Deleted―MIR122 Gene in HepG2 Cells. PLoS ONE, 2015, 10, e0122471.	1.1	6
146	Common Variants for Cardiovascular Disease. Circulation, 2017, 135, 2102-2105.	1.6	6
147	How close are we to implementing a genetic risk score for coronary heart disease?. Expert Review of Molecular Diagnostics, 2017, 17, 905-915.	1.5	6
148	Functional Analysis of the Coronary Heart Disease Risk Locus on Chromosome 21q22. Disease Markers, 2017, 2017, 1-10.	0.6	6
149	Estimation of the prevalence of cholesteryl ester storage disorder in a cohort of patients with clinical features of familial hypercholesterolaemia. Annals of Clinical Biochemistry, 2019, 56, 112-117.	0.8	5
150	Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. Inside the Cell, 2016, 1, 70-81.	0.4	4
151	Non-HDL or LDL cholesterol in heterozygous familial hypercholesterolaemia: findings of the Simon Broome Register. Current Opinion in Lipidology, 2020, 31, 167-175.	1.2	4
152	Familial lipoprotein lipase (LPL) deficiency: A catalogue of LPL gene mutations identified in 20 patients from the UK, Sweden, and Italy. Human Mutation, 1997, 10, 465-473.	1.1	4
153	The 10-Base-Pair Insertion in the Promoter of the Factor VII Gene Is not Associated with Lower Levels of Factor VI Ic in Afrocarribeans. Thrombosis and Haemostasis, 1997, 77, 213-214.	1.8	4
154	Applicability of the low-density lipoprotein cholesterol gene score in a South European population. Atherosclerosis, 2017, 263, e99-e100.	0.4	3
155	Identification of a novel proinsulin-associated SNP and demonstration that proinsulin is unlikely to be a causal factor in subclinical vascular remodelling using Mendelian randomisation. Atherosclerosis, 2017, 266, 196-204.	0.4	3
156	LDL-C Concentrations and the 12-SNP LDL-C Score for Polygenic Hypercholesterolaemia in Self-Reported South Asian, Black and Caribbean Participants of the UK Biobank. Frontiers in Genetics, 2022, 13, 845498.	1.1	3
157	Familial hypercholesterolaemia: what's new?. Paediatrics and Child Health (United Kingdom), 2019, 29, 127-136.	0.2	2
158	Management of familial hypercholesterolaemia in childhood. Current Opinion in Pediatrics, 2020, 32, 633-640.	1.0	2
159	Association of TLL1 gene polymorphism (rs1503298, T > C) with coronary heart disease in PREDICT, UDACS and ED cohorts. Journal of the College of Physicians and SurgeonsPakistan: JCPSP, 2014, 24, 615-9.	0.2	2
160	Simplified Detection of a Mutation Causing Familial Hypercholesterolaemia Throughout Britain: Evidence for an Origin in a Common Distant Ancestor. Annals of Clinical Biochemistry, 1998, 35, 226-235.	0.8	1
161	Cochrane Review: Statins for children with familial hypercholesterolemia. Evidence-Based Child Health: A Cochrane Review Journal, 2011, 6, 1086-1129.	2.0	1
162	Comparison of coronary heart disease genetic assessment with conventional cardiovascular risk assessment in primary care: reflections on a feasibility study. Primary Health Care Research and Development, 2015, 16, 607-617.	0.5	1

#	Article	IF	CITATIONS
163	Intake of food rich in saturated fat in relation to subclinical atherosclerosis and potential modulating effects from single genetic variants. Scientific Reports, 2021, 11, 7866.	1.6	1
164	Editor in Chief's report for Atherosclerosis for 2013. Atherosclerosis, 2014, 232, 254-256.	0.4	0
165	Editor-in-Chief's report 2014. Atherosclerosis, 2015, 239, A1-A2.	0.4	0
166	Editor-in-Chief's report 2015. Atherosclerosis, 2016, 244, 224-225.	0.4	0
167	Data on the association between a simplified Mediterranean diet score and the incidence of combined, cardio and cerebro vascular events. Data in Brief, 2019, 23, 103789.	0.5	0
168	Abstract 18262: Molecular Genetics of Familial Hypercholesterolemia in Israel Revisited. Circulation, 2014, 130, .	1.6	0