
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6329635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organocatalytic synthesis of poly(hydroxymethylfuroate) <i>via</i> ring-opening polymerization of 5-hydroxymethylfurfural-based cyclic oligoesters. Polymer Chemistry, 2022, 13, 1350-1358.	1.9	10
2	Rheological Response of Polylactic Acid Dispersions in Water with Xanthan Gum. ACS Omega, 2022, 7, 12536-12548.	1.6	3
3	The role of polymer structure on water confinement in poly(N-isopropylacrylamide) dispersions. Journal of Molecular Liquids, 2022, 355, 118924.	2.3	4
4	Thermal Behaviour of Microgels Composed of Interpenetrating Polymer Networks of Poly(N-isopropylacrylamide) and Poly(acrylic acid): A Calorimetric Study. Polymers, 2022, 14, 115.	2.0	2
5	Electrical conduction and noise spectroscopy of sodium-alginate gold-covered ultrathin films for flexible green electronics. Scientific Reports, 2022, 12, .	1.6	8
6	Keratin/Polylactic acid/graphene oxide composite nanofibers for drug delivery. International Journal of Pharmaceutics, 2022, 623, 121888.	2.6	9
7	Exploring Oxidative NHC atalysis as Organocatalytic Polymerization Strategy towards Polyamide Oligomers. Chemistry - A European Journal, 2021, 27, 1839-1848.	1.7	14
8	Proteinlike dynamical transition of hydrated polymer chains. Physical Review Research, 2021, 3, .	1.3	6
9	Electric Transport in Gold-Covered Sodium–Alginate Free-Standing Foils. Nanomaterials, 2021, 11, 565.	1.9	6
10	Polymer Identification and Specific Analysis (PISA) of Microplastic Total Mass in Sediments of the Protected Marine Area of the Meloria Shoals. Polymers, 2021, 13, 796.	2.0	17
11	Chemical-Physical Behaviour of Microgels Made of Interpenetrating Polymer Networks of PNIPAM and Poly(acrylic Acid). Polymers, 2021, 13, 1353.	2.0	15
12	Preparations of Poly(lactic acid) Dispersions in Water for Coating Applications. Polymers, 2021, 13, 2767.	2.0	9
13	Fully Recyclable OLEDs Built on a Flexible Biopolymer Substrate. ACS Sustainable Chemistry and Engineering, 2021, 9, 12733-12737.	3.2	8
14	Thermoresponsivity of poly(N-isopropylacrylamide) microgels in water-trehalose solution and its relation to protein behavior. Journal of Colloid and Interface Science, 2021, 604, 705-718.	5.0	9
15	Selective capture of antiâ€Nâ€glucosylated NTHi adhesin peptide antibodies by a multivalent dextran conjugate. ChemBioChem, 2021, , .	1.3	4
16	Synthesis and Exon-Skipping Properties of a 3′-Ursodeoxycholic Acid-Conjugated Oligonucleotide Targeting DMD Pre-mRNA: Pre-Synthetic versus Post-Synthetic Approach. Molecules, 2021, 26, 7662.	1.7	2
17	Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT. Polymer Bulletin, 2020, 77, 929-948.	1.7	63
18	Formation and Stability of Smooth Thin Films with Soft Microgels Made of Poly(N-Isopropylacrylamide) and Poly(Acrylic Acid). Polymers, 2020, 12, 2638.	2.0	6

#	Article	IF	CITATIONS
19	Atomic scale investigation of the volume phase transition in concentrated PNIPAM microgels. Journal of Chemical Physics, 2020, 152, 204904.	1.2	7
20	Relaxation Dynamics, Softness, and Fragility of Microgels with Interpenetrated Polymer Networks. Macromolecules, 2020, 53, 1596-1603.	2.2	24
21	Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications. Scientific Reports, 2020, 10, 6126.	1.6	59
22	The JG \hat{l}^2 -relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules. Journal of Chemical Physics, 2019, 151, 034504.	1.2	22
23	Understanding adhesion of gold conductive films on sodium-alginate by photoelectron spectroscopy. Thin Solid Films, 2019, 690, 137535.	0.8	6
24	Oxidative NHC atalysis as Organocatalytic Platform for the Synthesis of Polyester Oligomers by Stepâ€Growth Polymerization. Chemistry - A European Journal, 2019, 25, 14701-14710.	1.7	17
25	Study of network composition in interpenetrating polymer networks of poly(N isopropylacrylamide) microgels: The role of poly(acrylic acid). Journal of Colloid and Interface Science, 2019, 545, 210-219.	5.0	32
26	Flexible Conductors from Brown Algae for Green Electronics. Advanced Sustainable Systems, 2019, 3, 1900001.	2.7	11
27	Molecular mechanisms driving the microgels behaviour: A Raman spectroscopy and dynamic light scattering study. Journal of Molecular Liquids, 2019, 284, 718-724.	2.3	19
28	On the thermal behavior of protein isolated from different legumes investigated by <scp>DSC</scp> and <scp>TGA</scp> . Journal of the Science of Food and Agriculture, 2018, 98, 5368-5377.	1.7	66
29	Evidence of a low-temperature dynamical transition in concentrated microgels. Science Advances, 2018, 4, eaat5895.	4.7	28
30	Interpenetrating Polymer Network Microgels in Water: Effect of Composition on the Structural Properties and Electrosteric Interactions. ChemPhysChem, 2018, 19, 2894-2901.	1.0	12
31	Gold Nanoparticles on Sodium Alginate: Simulation of Optical Properties. , 2018, , .		1
32	Swelling of responsive-microgels: experiments versus models. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 389-396.	2.3	23
33	Dynamical behavior of microgels of interpenetrated polymer networks. Soft Matter, 2017, 13, 5185-5193.	1.2	39
34	Tuning the functionalization degree of amylose and amylopectin with photochromic spiropyran by CuAAc reaction. Polymer, 2017, 120, 82-93.	1.8	5
35	Emulsion Blending Approach for the Preparation of Gelatin/Poly(butylene succinate- <i>co</i> -adipate) Films. ACS Biomaterials Science and Engineering, 2016, 2, 677-686.	2.6	8
36	Local structure of temperature and pH-sensitive colloidal microgels. Journal of Chemical Physics, 2015, 143, 114904.	1.2	15

#	Article	IF	CITATIONS
37	Dynamic light scattering study of temperature and pH sensitive colloidal microgels. Journal of Non-Crystalline Solids, 2015, 407, 361-366.	1.5	23
38	Study of the cold crystallization of poly(ethylene terephthalate) at the air interface by ATR spectroscopy. European Polymer Journal, 2014, 60, 286-296.	2.6	5
39	A High-Field EPR Study of the Accelerated Dynamics of the Amorphous Fraction of Semicrystalline Poly(dimethylsiloxane) at the Melting Point. Applied Magnetic Resonance, 2014, 45, 693-706.	0.6	5
40	Characterization of an amylose-graft-poly(n-butyl methacrylate) copolymer obtained by click chemistry by EPR and SS-NMR spectroscopies. Carbohydrate Polymers, 2014, 112, 245-254.	5.1	18
41	Oxidation of glycogen "molecular nanoparticles―by periodate. Polymer Chemistry, 2013, 4, 653-661.	1.9	27
42	The unique optical behaviour of bioâ€related materials with organic chromophores. Polymer International, 2013, 62, 22-32.	1.6	13
43	Chitosan as biosupport for the MW-assisted synthesis of palladium catalysts and their use in the hydrogenation of ethyl cinnamate. Applied Catalysis A: General, 2013, 468, 95-101.	2.2	35
44	Applicability of photochemically generated pendant benzoyl peroxides in both "grafting from―and "grafting to―techniques. Chemical Papers, 2013, 67, .	1.0	5
45	Chemistry of Interfacial Interactions in a LDPE-Based Nanocomposite and Their Effect on the Nanoscale Hybrid Assembling. Macromolecules, 2013, 46, 1563-1572.	2.2	15
46	Preparation of gelatin/polyoxypropylene grafted copolymers by isocyanate promoted "grafting onto― reaction. Polymer, 2012, 53, 4595-4603.	1.8	5
47	Amphiphilic Amylose <i>-g-</i> poly(meth)acrylate Copolymers through "Click―onto Grafting Method. Biomacromolecules, 2011, 12, 388-398.	2.6	31
48	Easy detectable isocyanate in the reaction with gelatin. Polymer Bulletin, 2011, 66, 1015-1028.	1.7	4
49	Synthesis and photochromic response of a new precisely functionalized chitosan with "clicked― spiropyran. Carbohydrate Polymers, 2011, 85, 401-407.	5.1	29
50	Defined Chitosan-based networks by C-6-Azide–alkyne "click―reaction. Reactive and Functional Polymers, 2010, 70, 272-281.	2.0	47
51	Enhanced crystallization kinetics in poly(ethylene terephthalate) thin films evidenced by infrared spectroscopy. Polymer, 2010, 51, 3660-3668.	1.8	26
52	Interfacial effects on the dynamics of ethylene–propylene copolymer nanocomposite with inorganic clays. Journal of Non-Crystalline Solids, 2010, 356, 568-573.	1.5	20
53	Study of the compounding process parameters for morphology control of LDPE/layered silicate nanocomposites. E-Polymers, 2009, 9, .	1.3	1
54	Poly(ethyl acrylate) surface-initiated ATRP grafting from wood pulp cellulose fibers. Carbohydrate Polymers, 2009, 75, 22-31.	5.1	53

#	Article	IF	CITATIONS
55	Nanostructured polyolefins/clay composites: role of the molecular interaction at the interface. Polymers for Advanced Technologies, 2008, 19, 560-568.	1.6	30
56	Poly(lactic acid) properties as a consequence of poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 2008, 110, 1250-1262.	1.3	110
57	Evidences of macromolecular chains confinement of ethylene–propylene copolymer in organophilic montmorillonite nanocomposites. European Polymer Journal, 2008, 44, 1296-1308.	2.6	25
58	Oxygen and Water Vapor Barrier Properties of MMT Nanocomposites from Low Density Polyethylene or EPM with Grafted Succinic Groups. Journal of Nanoscience and Nanotechnology, 2008, 8, 1690-1699.	0.9	5
59	Influence of Confinement and Substrate Interaction on the Crystallization Kinetics of PET Ultrathin Films. AIP Conference Proceedings, 2008, , .	0.3	0
60	Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups. Journal of Nanoscience and Nanotechnology, 2008, 8, 1690-9.	0.9	1
61	Modification of Gelatin by Reaction with 1,6-Diisocyanatohexane. Macromolecular Bioscience, 2007, 7, 328-338.	2.1	34
62	Modification and photostabilization of low density polyethylene film by photodecomposition of various diazo-compounds and methyl azidocarboxylate. Polymer Degradation and Stability, 2007, 92, 849-858.	2.7	10
63	Conferring dichroic properties and optical responsiveness to polyolefins through organic chromophores and metal nanoparticles. Progress in Organic Coatings, 2007, 58, 105-116.	1.9	29
64	Polymerization Kinetics and Characterization of Dual Cured Polyurethane-Acrylate Nanocomposites for Laminates. Macromolecular Materials and Engineering, 2005, 290, 475-484.	1.7	9
65	Luminescent Bis(benzoxazolyl)stilbene as a Molecular Probe for Poly(propylene) Film Deformation. Macromolecular Rapid Communications, 2005, 26, 1043-1048.	2.0	106
66	Surface energy inducing asymmetric phase distribution in films of a bynary polymeric blend. Polymer, 2005, 46, 11311-11321.	1.8	9
67	Understanding the Accelerating Effect of ε-Caprolactam on the Formation of Urethane Linkages. Macromolecules, 2005, 38, 1385-1394.	2.2	12
68	Water extraction and degradation of a sterically hindered phenolic antioxidant in polypropylene films. Polymer, 2004, 45, 8751-8759.	1.8	78
69	Effect of the Structure of Reactor Poly(propylene-co-ethylene) Blends on the Diffusion Coefficient and Activation Energy of a Conventional Antioxidant. Macromolecular Chemistry and Physics, 2003, 204, 1869-1875.	1.1	10
70	Modification of surface and mechanical properties of polyethylene by photo-initiated reactions. Polymer Degradation and Stability, 2003, 82, 257-261.	2.7	13
71	Combining Theory and Experiment to Study the Photooxidation of Polyethylene and Polypropylene. Journal of Physical Chemistry B, 2003, 107, 11880-11888.	1.2	40
72	The Effects of Cold Plasma Treatments on LDPE Wettability and Curing Kinetic of a Polyurethane Adhesive. Macromolecular Symposia, 2001, 169, 71-80.	0.4	5

#	Article	IF	CITATIONS
73	Diffusion coefficient and activation energy of Irganox 1010 in poly(propylene-co-ethylene) copolymers. Polymer Degradation and Stability, 2001, 73, 411-416.	2.7	54