Sasidharan Unnikrishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6329526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Expansion Ratio and Nozzle Asymmetry on Flowfield of Diamond Jets. AIAA Journal, 2022, 60, 5215-5231.	1.5	4
2	Stability Analysis of Supersonic Flows Over a Modified Backward Facing Step. , 2021, , .		2
3	Experimental and Computational Study of a Mach 2 Diamond Jet. , 2021, , .		2
4	Global transition dynamics of flow in a lid-driven cubical cavity. Theoretical and Computational Fluid Dynamics, 2021, 35, 397-418.	0.9	5
5	Instabilities and transition in cooled wall hypersonic boundary layers. Journal of Fluid Mechanics, 2021, 915, .	1.4	12
6	Perturbation Analysis of Nonlinear Stages in Hypersonic Transition. International Journal of Computational Fluid Dynamics, 2021, 35, 306-318.	0.5	2
7	Linear and Nonlinear Flow Analysis of Elements of a Supersonic Inlet. AIAA Journal, 2021, 59, 4392-4409.	1.5	4
8	Representing rectangular jet dynamics through azimuthal Fourier modes. Physical Review Fluids, 2021, 6, .	1.0	12
9	A robust approach for stability analysis of complex flows using high-order Navier-Stokes solvers. Journal of Computational Physics, 2020, 403, 109076.	1.9	26
10	Linear, nonlinear and transitional regimes of second-mode instability. Journal of Fluid Mechanics, 2020, 905, .	1.4	23
11	The Dynamics of Azimuthal Modes in Rectangular Jets. , 2020, , .		8
12	On the Turbulence Statistics of a Hot, Overexpanded Rectangular Jet. , 2020, , .		4
13	Instability characteristics of cooled hypersonic boundary layers. , 2020, , .		1
14	A pressure decomposition framework for aeroacoustic analysis of turbulent jets. European Journal of Mechanics, B/Fluids, 2020, 81, 41-61.	1.2	10
15	First-mode-induced nonlinear breakdown in a hypersonic boundary layer. Computers and Fluids, 2019, 191, 104249.	1.3	14
16	Interactions between vortical, acoustic and thermal components during hypersonic transition. Journal of Fluid Mechanics, 2019, 868, 611-647.	1.4	24
17	Acoustically Informed Statistics for Wave-Packet Models. AIAA Journal, 2019, 57, 2421-2434.	1.5	27
18	Fluctuating-enthalpy source mechanisms of first- and second-mode oscillations in a hypersonic		0

boundary layer. , 2019, , .

#	Article	IF	CITATIONS
19	Kovasznay-type analysis of transition modes in a hypersonic boundary layer. , 2018, , .		7
20	Acoustic Characteristics of a Supersonic Twin-jet Configuration. , 2018, , .		2
21	Acoustically informed statistics for wavepacket models. , 2018, , .		0
22	Verification and application of a mean flow perturbation method for jet noise. Aerospace Science and Technology, 2018, 80, 520-540.	2.5	7
23	On the Use of Mean Flow Perturbation for Global Stability Analysis. , 2018, , .		1
24	Transfer mechanisms from stochastic turbulence to organized acoustic radiation in a supersonic jet. European Journal of Mechanics, B/Fluids, 2018, 72, 38-56.	1.2	18
25	Acoustic mode and sources in a supersonic jet. , 2017, , .		3
26	Directivity and intermittency in the nearfield of a Mach 1.3 jet. International Journal of Aeroacoustics, 2017, 16, 135-164.	0.8	2
27	Acoustic, hydrodynamic and thermal modes in a supersonic cold jet. Journal of Fluid Mechanics, 2016, 800, 387-432.	1.4	82
28	Application of Navier-Stokes based Mean-Flow Perturbation Method to Supersonic Jet Noise. , 2016, , .		1
29	A high-fidelity method to analyze perturbation evolution in turbulent flows. Journal of Computational Physics, 2016, 310, 45-62.	1.9	11