
Barbara J Ballermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6329361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Glomerular Endothelium Restricts Albumin Filtration. Frontiers in Medicine, 2021, 8, 766689.	2.6	16
2	Endothelial Cell Identity, Heterogeneity and Plasticity in the Kidney. Journal of the American Society of Nephrology: JASN, 2020, 31, 1-2.	6.1	10
3	TIMAP inhibits endothelial myosin light chain phosphatase by competing with MYPT1 for the catalytic protein phosphatase 1 subunit PP1cl ² . Journal of Biological Chemistry, 2019, 294, 13280-13291.	3.4	6
4	An In Vitro Kinase Assay to Assess Rac1 Phosphorylation by ERK. Methods in Molecular Biology, 2018, 1821, 131-140.	0.9	1
5	Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation. PLoS ONE, 2016, 11, e0147103.	2.5	40
6	Both CLIC4 and CLIC5A activate ERM proteins in glomerular endothelium. American Journal of Physiology - Renal Physiology, 2016, 311, F945-F957.	2.7	17
7	The chloride intracellular channel 5A stimulates podocyte Rac1, protecting against hypertension-induced glomerular injury. Kidney International, 2016, 89, 833-847.	5.2	18
8	TIMAP promotes angiogenesis by suppressing PTEN-mediated Akt inhibition in human glomerular endothelial cells. American Journal of Physiology - Renal Physiology, 2014, 307, F623-F633.	2.7	17
9	Tipping the balance from angiogenesis to fibrosis in CKD. Kidney International Supplements, 2014, 4, 45-52.	14.2	50
10	Clustered phosphatidylinositol 4,5 bisphosphate accumulation and ezrin phosphorylation in response to CLIC5A. Journal of Cell Science, 2014, 127, 5164-78.	2.0	21
11	Multi-directional function of the protein phosphatase 1 regulatory subunit TIMAP. Biochemical and Biophysical Research Communications, 2013, 435, 567-573.	2.1	12
12	Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function. Molecular and Cellular Biology, 2013, 33, 4538-4551.	2.3	46
13	Glomerular endothelium: A porous sieve and formidable barrier. Experimental Cell Research, 2012, 318, 964-972.	2.6	65
14	Dependence of Renal Microvessel Density on Angiotensin II. Journal of the American Society of Nephrology: JASN, 2010, 21, 386-388.	6.1	2
15	CLIC5A, a component of the ezrin-podocalyxin complex in glomeruli, is a determinant of podocyte integrity. American Journal of Physiology - Renal Physiology, 2010, 298, F1492-F1503.	2.7	51
16	Repressors NFI and NFY Participate in Organ-Specific Regulation of von Willebrand Factor Promoter Activity in Transgenic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1423-1429.	2.4	22
17	A human glomerular SAGE transcriptome database. BMC Nephrology, 2009, 10, 13.	1.8	23
18	Regulation of matrix metalloproteinaseâ€ 2 (MMPâ€ 2) activity by phosphorylation. FASEB Journal, 2007, 21, 2486-2495	0.5	132

#	Article	IF	CITATIONS
19	Phosphorylation of TIMAP by Glycogen Synthase Kinase-3Î ² Activates Its Associated Protein Phosphatase 1. Journal of Biological Chemistry, 2007, 282, 25960-25969.	3.4	22
20	Resolved. Journal of the American Society of Nephrology: JASN, 2007, 18, 2432-2438.	6.1	67
21	Contribution of the Endothelium to the Glomerular Permselectivity Barrier in Health and Disease. Nephron Physiology, 2007, 106, p19-p25.	1.2	65
22	Transforming Growth Factor- \hat{l}^2 and the Endothelium. , 2007, , 304-323.		0
23	Irradiation modulates association of NF-Y with histone-modifying cofactors PCAF and HDAC. Oncogene, 2007, 26, 7576-7583.	5.9	30
24	Glomerular endothelial cell differentiation. Kidney International, 2005, 67, 1668-1671.	5.2	92
25	A SAGE-based comparison between glomerular and aortic endothelial cells. American Journal of Physiology - Renal Physiology, 2005, 288, F1290-F1300.	2.7	26
26	The protein phosphatase-1 targeting subunit TIMAP regulates LAMR1 phosphorylation. Biochemical and Biophysical Research Communications, 2005, 338, 1327-1334.	2.1	30
27	Inhibition of Accelerated Graft Arteriosclerosis by Gene Transfer of Soluble Fibroblast Growth Factor Receptor-1 in Rat Aortic Transplants. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1081-1086.	2.4	11
28	Diminished NF-κB activation and PDGF-B expression in glomerular endothelial cells subjected to chronic shear stress. Microvascular Research, 2003, 65, 137-144.	2.5	35
29	Endothelial Cell Apoptosis during Glomerular Capillary Lumen Formation In Vivo. Journal of the American Society of Nephrology: JASN, 2003, 14, 1349-1354.	6.1	72
30	Synthesis of sulfated proteoglycans by bovine glomerular endothelial cells in culture. American Journal of Physiology - Renal Physiology, 2003, 284, F373-F380.	2.7	36
31	Glomerular Endothelial Fenestrae In Vivo Are Not Formed from Caveolae. Journal of the American Society of Nephrology: JASN, 2002, 13, 2639-2647.	6.1	70
32	TIMAP, a novel CAAX box protein regulated by TGF-β1 and expressed in endothelial cells. American Journal of Physiology - Cell Physiology, 2002, 283, C327-C337.	4.6	49
33	Renal Considerations in Angiotensin Converting Enzyme Inhibitor Therapy. Circulation, 2001, 104, 1985-1991.	1.6	305
34	Superoxide Regulation of Endothelin-converting Enzyme. Journal of Biological Chemistry, 2000, 275, 26423-26427.	3.4	40
35	A role for leptin in glomerulosclerosis?. Kidney International, 1999, 56, 1154-1155.	5.2	25
36	Neutralizing TGF-β1 antibody infusion in neonatal rat delays in vivo glomerular capillary formation. Kidney International, 1999, 56, 1334-1348.	5.2	40

#	Article	IF	CITATIONS
37	Expression of SET is modulated as a function of cell proliferation. Journal of Cellular Biochemistry, 1999, 74, 119-126.	2.6	17
38	Chronic in vitro shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. Journal of Vascular Surgery, 1999, 29, 157-167.	1.1	81
39	TGF-β type II receptor in rat renal vascular development: Localization to juxtaglomerular cells. Kidney International, 1998, 53, 716-725.	5.2	26
40	Endothelial cell activation. Kidney International, 1998, 53, 1810-1826.	5.2	53
41	Shear stress and the endothelium. Kidney International, 1998, 54, S100-S108.	5.2	333
42	Successful delayed bilateral renal revascularization during active phase of Takayasu's arteritis. Journal of Vascular Surgery, 1998, 27, 552-554.	1.1	7
43	Gelatin Increases Adherence of Polyurethane Vascular Grafts to Glass Slides. Journal of Histotechnology, 1998, 21, 245-247.	0.5	2
44	Adding Endothelium to Artificial Vascular Grafts. Physiology, 1998, 13, 154-154.	3.1	1
45	Smooth Muscle Cell Proliferation in Response to Co-culture with Venous and Arterial Endothelial Cells. Journal of Vascular and Interventional Radiology, 1997, 8, 375-381.	0.5	16
46	TGF-Î ² and the endothelium during immune injury. Kidney International, 1997, 51, 1401-1412.	5.2	73
47	Regulation of Endothelial Nitric-oxide Synthase during Hypoxia. Journal of Biological Chemistry, 1996, 271, 15069-15073.	3.4	176
48	Adhesion and Differentiation of Endothelial Cells by Exposure to Chronic Shear Stress: A Vascular Graft Model. Blood Purification, 1995, 13, 125-134.	1.8	49
49	ChronicIn VitroFlow Promotes Ultrastructural Differentiation of Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 1995, 3, 21-30.	1.7	49
50	Inhibition of Capillary Morphogenesis and Associated Apoptosis by Dominant Negative Mutant Transforming Growth Factor-Î ² Receptors. Journal of Biological Chemistry, 1995, 270, 21144-21150.	3.4	131
51	Shear stress-conditioned, endothelial cell-seeded vascular grafts: Improved cell adherence in response to in vitro shear stress*. Surgery, 1995, 117, 334-339.	1.9	104
52	Rat mesangial cell hypertrophy in response to transforming growth factor-β1. Kidney International, 1993, 44, 948-958.	5.2	76
53	Diverse biological actions of atrial natriuretic peptide. Physiological Reviews, 1990, 70, 665-699.	28.8	891
54	Tumor necrosis factor alpha activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism Journal of Experimental Medicine, 1990, 172, 1843-1852.	8.5	132

#	Article	IF	CITATIONS
55	Identification and characterization of endothelin binding sites in rat renal papillary and glomerular membranes. Biochemical and Biophysical Research Communications, 1989, 162, 130-137.	2.1	85
56	Endothelin action on vascular smooth muscle involves inositol trisphosphate and calcium mobilization. Biochemical and Biophysical Research Communications, 1989, 158, 86-93.	2.1	351
57	Endothelium-dependent vascular responses. Mediators and mechanisms Journal of Clinical Investigation, 1989, 84, 1373-1378.	8.2	226
58	Characterization and regulation by protein kinase C of renal glomerular atrial natriuretic peptide receptor-coupled guanylate cyclase. Biochemical and Biophysical Research Communications, 1988, 157, 755-761.	2.1	60
59	Elevated plasma atrial natriuretic peptide levels in diabetic rats. Potential mediator of hyperfiltration Journal of Clinical Investigation, 1987, 80, 670-674.	8.2	180
60	Renal Actions of Atrial Natriuretic Peptides. , 1987, , 83-92.		3
61	George E. Brown memorial lecture. Role of atrial peptides in body fluid homeostasis Circulation Research, 1986, 58, 619-630.	4.5	255
62	Role of atrial natriuretic peptide in adaptation of sodium excretion with reduced renal mass Journal of Clinical Investigation, 1986, 77, 1395-1398.	8.2	55
63	Atrial natriuretic peptide transcription, secretion, and glomerular receptor activity during mineralocorticoid escape in the rat Journal of Clinical Investigation, 1986, 78, 840-843.	8.2	77
64	Identification and characterization of leukotriene C4 receptors in isolated rat renal glomeruli Circulation Research, 1985, 56, 324-330.	4.5	39
65	Biologically active atrial peptides Journal of Clinical Investigation, 1985, 76, 2041-2048.	8.2	199
66	Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli Journal of Clinical Investigation, 1985, 76, 2049-2056.	8.2	215