Frida I Piper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6329081/publications.pdf Version: 2024-02-01

FDIDA I DIDED

#	Article	IF	CITATIONS
1	A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1, 1285-1291.	7.8	739
2	Physiological mechanisms of droughtâ€induced tree mortality are far from being resolved. New Phytologist, 2010, 186, 274-281.	7.3	535
3	Dynamics of nonâ€structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs, 2016, 86, 495-516.	5.4	458
4	Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.	3.1	163
5	Intraspecific trait variation and covariation in a widespread tree species (<i>Nothofagus pumilio</i>) in southern Chile. New Phytologist, 2011, 189, 259-271.	7.3	147
6	Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. Journal of Ecology, 2014, 102, 1101-1111.	4.0	91
7	Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science, 2011, 68, 415-424.	2.0	86
8	Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecology, 2006, 185, 29-39.	1.6	75
9	Carbohydrate storage, survival, and growth of two evergreen <i>Nothofagus</i> species in two contrasting light environments. Ecological Research, 2009, 24, 1233-1241.	1.5	63
10	Extreme defoliation reduces tree growth but not C and N storage in a winter-deciduous species. Annals of Botany, 2015, 115, 1093-1103.	2.9	63
11	Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location. Tree Physiology, 2017, 37, 1001-1010.	3.1	60
12	Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytologist, 2012, 195, 794-802.	7.3	58
13	Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany, 2013, 112, 623-631.	2.9	55
14	The Role of Nonstructural Carbohydrates Storage in Forest Resilience under Climate Change. Current Forestry Reports, 2020, 6, 1-13.	7.4	52
15	Disturbance regimes, gapâ€demanding trees and seed mass related to tree height in warm temperate rain forests worldwide. Biological Reviews, 2013, 88, 701-744.	10.4	48
16	Differential photosynthetic and survival responses to soil drought in two evergreenNothofagusspecies. Annals of Forest Science, 2007, 64, 447-452.	2.0	46
17	Distinguishing local from global climate influences in the variation of carbon status with altitude in a tree line species. Global Ecology and Biogeography, 2011, 20, 307-318.	5.8	45
18	Wind exposure and light exposure, more than elevationâ€related temperature, limit tree line seedling abundance on three continents. Journal of Ecology, 2016, 104, 1379-1390.	4.0	44

Frida I Piper

#	Article	IF	CITATIONS
19	<scp>M</scp> editerranean and temperate treelines are controlled by different environmental drivers. Journal of Ecology, 2016, 104, 691-702.	4.0	40
20	Seedling size influences relationships of shade tolerance with carbohydrate-storage patterns in a temperate rainforest. Functional Ecology, 2007, 21, 78.	3.6	38
21	Ontogeny, understorey light interception and simulated carbon gain of juvenile rainforest evergreens differing in shade tolerance. Annals of Botany, 2011, 108, 419-428.	2.9	38
22	An experimental approach to explain the southern Andes elevational treeline. American Journal of Botany, 2014, 101, 788-795.	1.7	37
23	Inner bark as a crucial tissue for nonâ€structural carbohydrate storage across three tropical woody plant communities. Plant, Cell and Environment, 2021, 44, 156-170.	5.7	36
24	Carbon dynamics of <i>Acer pseudoplatanus</i> seedlings under drought and complete darkness. Tree Physiology, 2016, 36, 1400-1408.	3.1	35
25	No evidence of carbon limitation with tree age and height in Nothofagus pumilio under Mediterranean and temperate climate conditions. Annals of Botany, 2011, 108, 907-917.	2.9	31
26	An assessment of carbon and nutrient limitations in the formation of the southern Andes tree line. Journal of Ecology, 2017, 105, 517-527.	4.0	30
27	Simulated warming does not impair seedling survival and growth of Nothofagus pumilio in the southern Andes. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 97-105.	2.7	28
28	Soil nitrogen, and not phosphorus, promotes clusterâ€root formation in a South American Proteaceae, <i>Embothrium coccineum</i> . American Journal of Botany, 2013, 100, 2328-2338.	1.7	22
29	Decoupling between growth rate and storage remobilization in broadleaf temperate tree species. Functional Ecology, 2020, 34, 1180-1192.	3.6	22
30	High foliar nutrient concentrations and resorption efficiency in <i>Embothrium coccineum</i> (Proteaceae) in southern Chile. American Journal of Botany, 2015, 102, 208-216.	1.7	19
31	Revisiting the relative growth rate hypothesis for gymnosperm and angiosperm species coâ€occurrence. American Journal of Botany, 2019, 106, 101-112.	1.7	17
32	How to cope with drought and not die trying: Drought acclimation across tree species with contrasting niche breadth. Functional Ecology, 2021, 35, 1903-1913.	3.6	15
33	Patterns of carbon storage in relation to shade tolerance in southern South American species. American Journal of Botany, 2015, 102, 1442-1452.	1.7	13
34	Cluster root formation and function vary in two species with contrasting geographic ranges. Plant and Soil, 2019, 440, 25-38.	3.7	13
35	Global patterns of insect herbivory in gap and understorey environments, and their implications for woody plant carbon storage. Oikos, 2018, 127, 483-496.	2.7	12
36	Secondary leaves of an outbreak-adapted tree species are both more resource acquisitive and more herbivore resistant than primary leaves. Tree Physiology, 2019, 39, 1499-1511.	3.1	12

Frida I Piper

#	Article	IF	CITATIONS
37	Herbivore resistance in congeneric and sympatric <i>Nothofagus</i> species is not related to leaf habit. American Journal of Botany, 2019, 106, 788-797.	1.7	10
38	Carbon allocation to growth and storage in two evergreen species of contrasting successional status. American Journal of Botany, 2017, 104, 654-662.	1.7	9
39	Low Growth Sensitivity and Fast Replenishment of Non-structural Carbohydrates in a Long-Lived Endangered Conifer After Drought. Frontiers in Plant Science, 2020, 11, 905.	3.6	9
40	Phenology explains different storage remobilization in two congeneric temperate tree species with contrasting leaf habit. Tree Physiology, 2022, 42, 501-512.	3.1	9
41	The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Functional Ecology, 2022, 36, 1585-1598.	3.6	9
42	The association between a nurse cushion plant and a cluster rootâ€bearing tree species alters the plant community structure. Journal of Ecology, 2019, 107, 2182-2196.	4.0	7
43	Drought promotes early leaf abscission regardless of leaf habit but increases litter phosphorus losses only in evergreens. Australian Journal of Botany, 2021, 69, 121-130.	0.6	7
44	Carbon allocation to growth and storage depends on elevation provenance in an herbaceous alpine plant of Mediterranean climate. Oecologia, 2021, 195, 299-312.	2.0	7
45	Does carbon storage confer waterlogging tolerance? Evidence from four evergreen species of a temperate rainforest. Australian Journal of Botany, 2018, 66, 74.	0.6	6
46	Responses of two températe evergreen Nothofagus species to sudden and gradual waterlogging: relationships with distribution patterns. Revista Chilena De Historia Natural, 2008, 81, .	1.2	5
47	Gas exchange of juvenile and mature trees of <i>Alnus jorullensis</i> (Betulaceae) at sites with contrasting humidity in the Venezuelan Andes. Ecological Research, 2010, 25, 51-58.	1.5	5
48	Cluster-root bearing Proteaceae species show a competitive advantage over non-cluster root species. Annals of Botany, 2019, 124, 1121-1131.	2.9	5
49	Putting non-structural compounds on the map of plant life history strategies: a commentary on Schoonmaker etÂal Tree Physiology, 2021, 41, 1559-1562.	3.1	5
50	No carbon shortage in declining trees of the isohydric species Araucaria araucana (Molina) K. Koch under drought. Annals of Forest Science, 2022, 79, .	2.0	5
51	Does microwaving or freezing reduce the losses of non-structural carbohydrates during plant sample processing?. Annals of Forest Science, 2020, 77, 1.	2.0	4
52	Elevational variation of the seasonal dynamic of carbohydrate reserves in an alpine plant of Mediterranean mountains. Alpine Botany, 0, , 1.	2.4	3
53	Problems with bioclimatic definitions of vegetation types. New Zealand Journal of Botany, 2017, 55, 373-377.	1.1	2
54	Solid shelter tubes alleviate summer stresses during outplanting in drought-tolerant species of Mediterranean forests. New Forests, 0, , 1.	1.7	1

#	ARTICLE	IF	CITATIONS
55	Intraespecific variation in drought resistance of Nothofagus antarctica (G. Forst.) Oerst. (Nothofagaceae). Gayana - Botanica, 2012, 69, 365-368.	0.2	1
56	Dams and afforestation plans in Chilean Patagonia. Frontiers in Ecology and the Environment, 2011, 9, 96-96.	4.0	0