
Tatas Brotosudarmo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6328727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Adsorption and Desorption Time in the Extraction of Volatile Compounds in Brewed Java Arabica Coffee Using the HS-SPME/GC-MS Technique. Jurnal Kimia Sains Dan Aplikasi, 2022, 25, 49-55.	0.1	0
2	Green ultrasound-assisted extraction of astaxanthin from fermented rebon shrimp (cincalok) using vegetable oils as solvents. OCL - Oilseeds and Fats, Crops and Lipids, 2022, 29, 15.	0.6	1
3	Deep chemometrics for nondestructive photosynthetic pigments prediction using leaf reflectance spectra. Information Processing in Agriculture, 2021, 8, 194-204.	2.9	6
4	Carotenoid composition in buah merah (Pandanus conoideus Lam.), an indigenous red fruit of the Papua Islands. Journal of Food Composition and Analysis, 2021, 96, 103722.	1.9	8
5	Recent exploration of bioactive pigments from marine bacteria. ScienceAsia, 2021, 47, 265.	0.2	1
6	Characterization of Tambjamines Pigment from Marine Bacterium Pseudoalteromonas sp. PM2 Indigenous from Alor Island, Indonesia. Indonesian Journal of Natural Pigments, 2021, 3, 16-23.	0.4	0
7	Carotenoid Analysis from Commercial Banana Cultivars (<i>Musa</i> spp.) in Malang, East Java, Indonesia. Indonesian Journal of Chemistry, 2021, 21, 690.	0.3	1
8	Visible Light-Induced Antibacterial Activity of Pigments Extracted from Dregs of Green and Black Teas. Scientifica, 2021, 2021, 1-12.	0.6	4
9	The Development of Flake Containing Provitamin A Carotenoids From Blend of Banana and Yellow-Fleshed Sweet Potato. Indonesian Journal of Natural Pigments, 2021, 3, 36.	0.4	0
10	Marine bacterium Seonamhaeicola algicola strain CC1 as a potential source for the antioxidant carotenoid, zeaxanthin. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 2021, 26, 215-224.	0.3	2
11	Structures of Astaxanthin and Their Consequences for Therapeutic Application. International Journal of Food Science, 2020, 2020, 1-16.	0.9	75
12	Evaluating Provitamin A Carotenoids and Polar Metabolite Compositions during the Ripening Stages of the Agung Semeru Banana (Musa paradisiaca L. AAB). International Journal of Food Science, 2020, 2020, 1-9.	0.9	2
13	An Indonesian Marine Bacterium, <i>Pseudoalteromonas rubra</i> , Produces Antimicrobial Prodiginine Pigments. ACS Omega, 2020, 5, 4626-4635.	1.6	28
14	Real-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile application. Journal of Agricultural Engineering, 2020, 51, 220-228.	0.7	5
15	The activity of Flavonoid Isolates from Papaya (Carica papaya L.) Seed as Pancreatic Lipase Inhibitor. IOP Conference Series: Materials Science and Engineering, 2019, 546, 062031.	0.3	6
16	Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5. Marine Drugs, 2019, 17, 349.	2.2	29
17	Integrated solvent-free extraction and encapsulation of lutein from marigold petals and its application. CYTA - Journal of Food, 2019, 17, 121-127.	0.9	4
18	Performance comparison of the convolutional neural network optimizer for photosynthetic pigments prediction on plant digital image. AIP Conference Proceedings, 2019, , .	0.3	12

TATAS BROTOSUDARMO

#	Article	IF	CITATIONS
19	Complete Genome Sequence of the Marine Bacterium Erythrobacter flavus Strain KJ5. Microbiology Resource Announcements, 2019, 8, .	0.3	4
20	Convolutional neural network in image analysis for determination of mangrove species. , 2019, , .		1
21	Single cells diatom Chaetoceros muelleri investigated by homebuilt confocal fluorescence spectro-microscopy. , 2019, , .		0
22	Multispectral Imaging and Convolutional Neural Network for Photosynthetic Pigments Prediction. , 2018, , .		5
23	Ragam Metode Ekstraksi Karotenoid dari Sumber Tumbuhan dalam Dekade Terakhir (Telaah Literatur). Jurnal Rekayasa Kimia & Lingkungan, 2018, 13, 40-50.	0.5	8
24	HYPOCHOLESTEROLEMIC EFFECT AND PIGMENTS COMPOSITION OF HERBAL MEDICINE CONTAINING HIGHER AND LOWER PLANTS. International Journal of Pharmacy and Pharmaceutical Sciences, 2017, 9, 97.	0.3	0
25	Low-cost chlorophyll meter (LCCM): portable measuring device for leaf chlorophyll. Proceedings of SPIE, 2016, , .	0.8	1
26	Artificial neural network model for photosynthetic pigments identification using multi wavelength chromatographic data. AIP Conference Proceedings, 2016, , .	0.3	0
27	PHOTOSTABILITY OF PURPLE BACTERIAL LIGHT–HARVESTING COMPLEXES TOWARDS EXPOSURE OF LIGHT ILLUMINATION TRACED BY PIGMENT RATIO. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	Ο
28	Preliminary Evaluation of the Pigments Content from Rhodobacter Sphaeroides at Stages during Photosynthetic Growth. Procedia Chemistry, 2015, 14, 101-107.	0.7	3
29	Stability of Palm Carotenes in an Organic Solvent and in a Food Emulsion System. International Journal of Food Properties, 2015, 18, 2539-2548.	1.3	5
30	Composition of Photosynthetic Pigments in a Red Alga Kappaphycus Alvarezi Cultivated in Different Depths. Procedia Chemistry, 2015, 14, 193-201.	0.7	19
31	Separation of Photosynthetic Pigments by High-performance Liquid Chromatography: Comparison of Column Performance, Mobile Phase, and Temperature. Procedia Chemistry, 2015, 14, 202-210.	0.7	12
32	Web camera as low cost multispectral sensor for quantification of chlorophyll in soybean leaves. Proceedings of SPIE, 2015, , .	0.8	0
33	Application of Simple Multispectral Image Sensor and Artificial Intelligence for Predicting of Drought Tolerant Variety of Soybean. Procedia Chemistry, 2015, 14, 246-255.	0.7	1
34	Analysis on the Chlorophyll Content of Commercial Green Leafy Vegetables. Procedia Chemistry, 2015, 14, 225-231.	0.7	67
35	Adaptation of the Photosynthetic Unit of Purple Bacteria to Changes of Light Illumination Intensities. Procedia Chemistry, 2015, 14, 414-421.	0.7	12
36	Automatic leaf color level determination for need based fertilizer using fuzzy logic on mobile		3

application: A model for soybean leaves. , 2014, , .

TATAS BROTOSUDARMO

#	Article	IF	CITATIONS
37	Probabilistic classification method on multi wavelength chromatographic data for photosynthetic pigments identification. , 2014, , .		1
38	The Light Reactions of Photosynthesis as a Paradigm for Solar Fuel Production. Energy Procedia, 2014, 47, 283-289.	1.8	5
39	Photostability Assay on Light-harvesting Complex as a Material of Biophotovoltaic. Energy Procedia, 2014, 47, 189-195.	1.8	2
40	Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods. Physical Chemistry Chemical Physics, 2014, 16, 9015.	1.3	15
41	Reconstitution Approach to Tune Spectral Features of Light Harvesting Complexes for Improved Light Absorption and Energy Transfer. Energy Procedia, 2014, 47, 113-122.	1.8	1
42	Rapid nitrogen determination of soybean leaves using mobile application. , 2013, , .		6
43	Tracing of backward energy transfer from LH1 to LH2 in photosynthetic membranes grown under high and low irradiation EPJ Web of Conferences, 2013, 41, 08011.	0.1	0
44	Energy transfer from conjugated polymer to bacterial light-harvesting complex. Applied Physics Letters, 2012, 101, .	1.5	8
45	Plasmon-enhanced fluorescence in heterochlorophyllous peridinin-chlorophyll-protein photosynthetic complex. Optical Materials, 2012, 34, 2076-2079.	1.7	6
46	Tracking energy transfer between light harvesting complex 2 and 1 in photosynthetic membranes grown under high and low illumination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1473-1478.	3.3	53
47	Estimasi Produk Degradasi Ekstrak Kasar Pigmen Alga Merah Kappaphycus alvarezii (Doty) Doty Varian Merah, Coklat, dan Hijau: Telaah Perbedaan Spektrum Serapan. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 2012, 17, 31.	0.3	0
48	Absorption Enhancement in Peridinin–Chlorophyll–Protein Light-Harvesting Complexes Coupled to Semicontinuous Silver Film. Plasmonics, 2012, 7, 115-121.	1.8	28
49	Spectral Dependence of Fluorescence Enhancement in LH2-Au Nanoparticle Hybrid Nanostructures. Acta Physica Polonica A, 2012, 122, 252-254.	0.2	4
50	The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochemical Journal, 2011, 440, 51-61.	1.7	33
51	Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles. Applied Physics Letters, 2011, 99, .	1.5	46
52	Artificial photosynthesis – solar fuels: current status and future prospects. Biofuels, 2010, 1, 861-876.	1.4	56
53	STUDY ON THE STRUCTURAL BASIS OF PERIPHERAL LIGHT HARVESTING COMPLEXES (LH2) IN PURPLE NON-SULPHUR PHOTOSYNTHETIC BACTERIA. Indonesian Journal of Chemistry, 2010, 10, 401-408.	0.3	1
54	Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. Materials Research Society Symposia Proceedings, 2009, 1208, 1.	0.1	0

#	Article	IF	CITATIONS
55	Single-Molecule Spectroscopy Reveals that Individual Low-Light LH2 Complexes from Rhodopseudomonas palustris 2.1.6. Have a Heterogeneous Polypeptide Composition. Biophysical Journal, 2009, 97, 1491-1500.	0.2	63
56	Low Light Adaptation: Energy Transfer Processes in Different Types of Light Harvesting Complexes from Rhodopseudomonas palustris. Biophysical Journal, 2009, 97, 3019-3028.	0.2	31
57	Plasmon Enhancement of Fluorescence in Single Light-Harvesting Complexes from em Amphidinium carterae. Acta Physica Polonica A, 2009, 116, S-22-S-25.	0.2	11
58	Fluorescence spectroscopy of reconstituted peridinin–chlorophyll–protein complexes. Photosynthesis Research, 2008, 95, 253-260.	1.6	11
59	Relative binding affinities of chlorophylls in peridinin–chlorophyll–protein reconstituted with heterochlorophyllous mixtures. Photosynthesis Research, 2008, 95, 247-252.	1.6	15
60	Single Molecule Fluorescence of Native and Refolded Peridinin–Chlorophyll–Protein Complexes. Journal of Fluorescence, 2008, 18, 611-617.	1.3	15
61	A comparative look at the first few milliseconds of the light reactions of photosynthesis. Photochemical and Photobiological Sciences, 2008, 7, 1150-1158.	1.6	33
62	P/7 The structure of purple bacterial antenna complexes: From single molecules to native membranes. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S3.	0.5	0
63	Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes. Nano Letters, 2008, 8, 558-564.	4.5	146
64	Detection of single biomolecule fluorescence excited through energy transfer: Application to light-harvesting complexes. Applied Physics Letters, 2007, 90, 193901.	1.5	18
65	Energy Transfer in Reconstituted Peridinin-Chlorophyll-Protein Complexes: Ensemble and Single-Molecule Spectroscopy Studies. Biophysical Journal, 2007, 93, 3249-3258.	0.2	35
66	Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single molecule spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 956-964.	0.5	54
67	Peridinin-chlorophyll-protein reconstituted with chlorophyll mixtures: Preparation, bulk and single molecule spectroscopy. FEBS Letters, 2006, 580, 5257-5262.	1.3	31
68	Chloroplast Pigments: Structure, Function, Assembly and Characterization. , 0, , .		7
69	Saponin from purple eggplant (<i>Solanum melongena</i> L.) and their activity as pancreatic lipase inhibitor. IOP Conference Series: Materials Science and Engineering, 0, 509, 012139.	0.3	6
70	Effect of drying treatments on the contents of lutein and zeaxanthin in orange- and yellow-cultivars of marigold flower and its application for lutein ester encapsulation. IOP Conference Series: Materials Science and Engineering, 0, 509, 012060.	0.3	6
71	Remnant photosynthetic pigments in tea dregs: identification, composition, and potential use as antibacterial photosensitizer. Potravinarstvo, 0, 15, 835-845.	0.5	0
72	Wavelength-Dependent Optical Response of Single Photosynthetic Antenna Complexes from Siphonous Green Alga <i>Codium fragile</i> . Journal of Physical Chemistry Letters, 0, , 5226-5231.	2.1	1