Anthony James Kettle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6328459/publications.pdf Version: 2024-02-01

		25034	22166
141	13,341	57	113
papers	citations	h-index	g-index
142	142	142	11620
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood, 1998, 92, 3007-3017.	1.4	1,321
2	Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Report, 1997, 3, 3-15.	4.5	621
3	Reactive Oxygen Species and Neutrophil Function. Annual Review of Biochemistry, 2016, 85, 765-792.	11.1	592
4	Modeling the Reactions of Superoxide and Myeloperoxidase in the Neutrophil Phagosome. Journal of Biological Chemistry, 2006, 281, 39860-39869.	3.4	544
5	Myeloperoxidase: a front-line defender against phagocytosed microorganisms. Journal of Leukocyte Biology, 2013, 93, 185-198.	3.3	541
6	Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood, 1998, 92, 3007-3017.	1.4	404
7	Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology, 2012, 92, 841-849.	3.3	387
8	Redox Reactions and Microbial Killing in the Neutrophil Phagosome. Antioxidants and Redox Signaling, 2013, 18, 642-660.	5.4	381
9	Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochemical Journal, 1997, 327, 487-492.	3.7	372
10	Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radical Biology and Medicine, 2000, 29, 403-409.	2.9	344
11	Chlorination of Tyrosyl Residues in Peptides by Myeloperoxidase and Human Neutrophils. Journal of Biological Chemistry, 1995, 270, 16542-16548.	3.4	303
12	Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. Journal of Leukocyte Biology, 2011, 91, 369-376.	3.3	294
13	Myeloperoxidase. Current Opinion in Hematology, 2000, 7, 53-58.	2.5	259
14	[53] Assays for the chlorination activity of myeloperoxidase. Methods in Enzymology, 1994, 233, 502-512.	1.0	230
15	Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide. Biochemical Journal, 1997, 321, 503-508.	3.7	211
16	Mechanism of Reaction of Myeloperoxidase with Nitrite. Journal of Biological Chemistry, 2000, 275, 20597-20601.	3.4	210
17	Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology, 2012, 51, 1796-1803.	1.9	180
18	Neutrophils convert tyrosyl residues in albumin to chlorotyrosine. FEBS Letters, 1996, 379, 103-106.	2.8	175

#	Article	IF	CITATIONS
19	Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochemical Journal, 1988, 252, 529-536.	3.7	173
20	Chlorination of Bacterial and Neutrophil Proteins during Phagocytosis and Killing of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 9757-9762.	3.4	172
21	Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs. Biochemical Pharmacology, 1991, 41, 1485-1492.	4.4	169
22	Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochemical Journal, 1995, 308, 559-563.	3.7	159
23	A sensitive and selective assay for chloramine production by myeloperoxidase. Free Radical Biology and Medicine, 2005, 39, 1468-1477.	2.9	141
24	Myeloperoxidase and Protein Oxidation in the Airways of Young Children with Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1317-1323.	5.6	134
25	2-Thioxanthines Are Mechanism-based Inactivators of Myeloperoxidase That Block Oxidative Stress during Inflammation. Journal of Biological Chemistry, 2011, 286, 37578-37589.	3.4	134
26	Nitrite as a Substrate and Inhibitor of Myeloperoxidase. Journal of Biological Chemistry, 2000, 275, 11638-11644.	3.4	133
27	Disease Stage-Dependent Accumulation of Lipid and Protein Oxidation Products in Human Atherosclerosis. American Journal of Pathology, 2002, 160, 701-710.	3.8	128
28	Superoxide Converts Indigo Carmine to Isatin Sulfonic Acid. Journal of Biological Chemistry, 2004, 279, 18521-18525.	3.4	121
29	Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride. Archives of Biochemistry and Biophysics, 2006, 445, 235-244.	3.0	112
30	Urate as a Physiological Substrate for Myeloperoxidase. Journal of Biological Chemistry, 2011, 286, 12901-12911.	3.4	109
31	Radical–radical reactions of superoxide: a potential route to toxicity. Biochemical and Biophysical Research Communications, 2003, 305, 729-736.	2.1	106
32	Ceruloplasmin Is an Endogenous Inhibitor of Myeloperoxidase. Journal of Biological Chemistry, 2013, 288, 6465-6477.	3.4	106
33	The Lipocalin α1-Microglobulin Has Radical Scavenging Activity. Journal of Biological Chemistry, 2007, 282, 31493-31503.	3.4	105
34	3-Chlorotyrosine as a Marker of Protein Damage by Myeloperoxidase in Tracheal Aspirates From Preterm Infants: Association With Adverse Respiratory Outcome. Pediatric Research, 2003, 53, 455-462.	2.3	98
35	Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radical Biology and Medicine, 2002, 33, 847-856.	2.9	96
36	Peroxynitrite and myeloperoxidase leave the same footprint in protein nitration. Redox Report, 1997, 3, 257-258.	4.5	94

#	Article	IF	CITATIONS
37	Measuring chlorine bleach in biology and medicine. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 781-793.	2.4	91
38	Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. European Heart Journal, 2018, 39, 3301-3310.	2.2	91
39	Reactions of Superoxide with Myeloperoxidase. Biochemistry, 2007, 46, 4888-4897.	2.5	90
40	Substrates and products of eosinophil peroxidase. Biochemical Journal, 2001, 358, 233-239.	3.7	89
41	A Kinetic Analysis of the Catalase Activity of Myeloperoxidaseâ€. Biochemistry, 2001, 40, 10204-10212.	2.5	86
42	Identifying peroxidases and their oxidants in the early pathology of cystic fibrosis. Free Radical Biology and Medicine, 2010, 49, 1354-1360.	2.9	86
43	Characterization of non-covalent oligomers of proteins treated with hypochlorous acid. Biochemical Journal, 2003, 375, 33-40.	3.7	85
44	Potent Reversible Inhibition of Myeloperoxidase by Aromatic Hydroxamates. Journal of Biological Chemistry, 2013, 288, 36636-36647.	3.4	85
45	Superoxide is an antagonist of anti-inflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase. Biochemical Pharmacology, 1993, 45, 2003-2010.	4.4	83
46	Inhibition of MPO (Myeloperoxidase) Attenuates Endothelial Dysfunction in Mouse Models of Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1448-1457.	2.4	79
47	Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC–MS/MS method. Biochemical Journal, 2006, 399, 161-168.	3.7	75
48	Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode. Biochemical Journal, 1989, 263, 823-828.	3.7	68
49	Superoxide-dependent Oxidation of Melatonin by Myeloperoxidase. Journal of Biological Chemistry, 2005, 280, 38160-38169.	3.4	67
50	Oxidation contributes to low glutathione in the airways of children with cystic fibrosis. European Respiratory Journal, 2014, 44, 122-129.	6.7	67
51	Myricitrin as a substrate and inhibitor of myeloperoxidase: Implications for the pharmacological effects of flavonoids. Free Radical Biology and Medicine, 2008, 44, 109-120.	2.9	66
52	Myeloperoxidase-Dependent Generation of a Tyrosine Peroxide by Neutrophils. Archives of Biochemistry and Biophysics, 1997, 338, 15-21.	3.0	65
53	Simultaneous determination of reduced glutathione, glutathione disulphide and glutathione sulphonamide in cells and physiological fluids by isotope dilution liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3393-3399.	2.3	65
54	The mechanism of myeloperoxidase-dependent chlorination of monochlorodimedon. BBA - Proteins and Proteomics, 1988, 957, 185-191.	2.1	61

#	Article	IF	CITATIONS
55	Comparison of Mono- and Dichlorinated Tyrosines with Carbonyls for Detection of Hypochlorous Acid Modified Proteins. Archives of Biochemistry and Biophysics, 2000, 377, 95-100.	3.0	61
56	Transient and Steady-state Kinetics of the Oxidation of Substituted Benzoic Acid Hydrazides by Myeloperoxidase. Journal of Biological Chemistry, 1999, 274, 9494-9502.	3.4	60
57	Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations. Biochemical Pharmacology, 2010, 79, 1156-1164.	4.4	59
58	A pulse radiolysis investigation of the reactions of myeloperoxidase with superoxide and hydrogen peroxide. BBA - Proteins and Proteomics, 1988, 956, 58-62.	2.1	56
59	Inactivation of human myeloperoxidase by hydrogen peroxide. Archives of Biochemistry and Biophysics, 2013, 539, 51-62.	3.0	56
60	Substrates and products of eosinophil peroxidase. Biochemical Journal, 2001, 358, 233.	3.7	53
61	Protein chlorination in neutrophil phagosomes and correlation with bacterial killing. Free Radical Biology and Medicine, 2014, 77, 49-56.	2.9	51
62	Antiinflammatory and Antimicrobial Effects of Thiocyanate in a Cystic Fibrosis Mouse Model. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 193-205.	2.9	51
63	Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radical Biology and Medicine, 2017, 113, 236-243.	2.9	51
64	Hypochlorous Acid Activates the Tumor Suppressor Protein p53 in Cultured Human Skin Fibroblasts. Archives of Biochemistry and Biophysics, 1998, 359, 51-56.	3.0	49
65	Hypobromous acid and bromamine production by neutrophils and modulation by superoxide. Biochemical Journal, 2009, 417, 773-781.	3.7	49
66	Initiation of Rapid, P53-Dependent Growth Arrest in Cultured Human Skin Fibroblasts by Reactive Chlorine Species. Archives of Biochemistry and Biophysics, 2000, 377, 122-128.	3.0	48
67	Oxidation of Methionine to Dehydromethionine by Reactive Halogen Species Generated by Neutrophils. Biochemistry, 2009, 48, 10175-10182.	2.5	47
68	Pathways for the Decay of Organic Dichloramines and Liberation of Antimicrobial Chloramine Gases. Chemical Research in Toxicology, 2008, 21, 2334-2343.	3.3	45
69	Superoxide-mediated Formation of Tyrosine Hydroperoxides and Methionine Sulfoxide in Peptides through Radical Addition and Intramolecular Oxygen Transfer. Journal of Biological Chemistry, 2009, 284, 14723-14733.	3.4	45
70	Superoxide enhances hypochlorous acid production by stimulated human neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1052, 379-385.	4.1	44
71	Serotonin as a physiological substrate for myeloperoxidase and its superoxide-dependent oxidation to cytotoxic tryptamine-4,5-dione. Biochemical Journal, 2010, 425, 285-293.	3.7	42
72	Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2022, 10, 38.	5.2	42

#	Article	IF	CITATIONS
73	Assessment of Myeloperoxidase Activity by the Conversion of Hydroethidine to 2-Chloroethidium. Journal of Biological Chemistry, 2014, 289, 5580-5595.	3.4	41
74	Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy. Redox Biology, 2016, 9, 276-286.	9.0	41
75	Effect of activated human polymorphonuclear leucocytes on <scp>T</scp> lymphocyte proliferation and viability. Immunology, 2012, 137, 249-258.	4.4	39
76	Oxidation of tryptophan by redox intermediates of myeloperoxidase and inhibition of hypochlorous acid production. Redox Report, 2000, 5, 179-184.	4.5	38
77	Heterogeneity of hypochlorous acid production in individual neutrophil phagosomes revealed by a rhodamine-based probe. Journal of Biological Chemistry, 2018, 293, 15715-15724.	3.4	38
78	Cross-linking methionine and amine residues with reactive halogen species. Free Radical Biology and Medicine, 2014, 70, 278-287.	2.9	37
79	Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. Journal of Biological Chemistry, 2019, 294, 13502-13514.	3.4	37
80	Intestinal helminth infection promotes IL-5- and CD4+ T cell-dependent immunity in the lung against migrating parasites. Mucosal Immunology, 2019, 12, 352-362.	6.0	36
81	Myeloperoxidase and oxidation of uric acid in gout: implications for the clinical consequences of hyperuricaemia. Rheumatology, 2014, 53, 1958-1965.	1.9	35
82	Do neutrophils produce ozone? An appraisal of current evidence. BioFactors, 2005, 24, 41-45.	5.4	34
83	Assays using horseradish peroxidase and phenolic substrates require superoxide dismutase for accurate determination of hydrogen peroxide production by neutrophils. Free Radical Biology and Medicine, 1994, 17, 161-164.	2.9	33
84	The Activation of Gold Complexes by Cyanide Produced by Polymorphonuclear Leukocytes. Biochemical Pharmacology, 1998, 56, 307-312.	4.4	33
85	Oxidative cross-linking of calprotectin occurs in vivo, altering its structure and susceptibility to proteolysis. Redox Biology, 2019, 24, 101202.	9.0	33
86	Reactions of superoxide with the myoglobin tyrosyl radical. Free Radical Biology and Medicine, 2010, 48, 1540-1547.	2.9	30
87	Isoniazid as a substrate and inhibitor of myeloperoxidase: Identification of amine adducts and the influence of superoxide dismutase on their formation. Biochemical Pharmacology, 2012, 84, 949-960.	4.4	30
88	Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis. Free Radical Biology and Medicine, 2015, 86, 133-144.	2.9	30
89	Myeloperoxidase-dependent Lipid Peroxidation Promotes the Oxidative Modification of Cytosolic Proteins in Phagocytic Neutrophils. Journal of Biological Chemistry, 2015, 290, 9896-9905.	3.4	30
90	Current concepts of the actions of paracetamol (acetaminophen) and NSAIDs. Inflammopharmacology, 1999, 7, 255-263.	3.9	29

#	Article	IF	CITATIONS
91	Uric Acid and Thiocyanate as Competing Substrates of Lactoperoxidase. Journal of Biological Chemistry, 2014, 289, 21937-21949.	3.4	27
92	Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition. Free Radical Biology and Medicine, 2014, 70, 86-95.	2.9	27
93	Oxidative metabolism of mitoxantrone by the human neutrophil enzyme myeloperoxidase. Biochemical Pharmacology, 1994, 48, 2223-2230.	4.4	26
94	Detection of 3-chlorotyrosine in proteins exposed to neutrophil oxidants. Methods in Enzymology, 1999, 300, 111-120.	1.0	26
95	Detection of allantoin in clinical samples using hydrophilic liquid chromatography with stable isotope dilution negative ion tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 891-892, 85-89.	2.3	25
96	Suppression of Autoimmunity and Renal Disease in Pristaneâ€Induced Lupus by Myeloperoxidase. Arthritis and Rheumatology, 2015, 67, 1868-1880.	5.6	25
97	Oxidized glutathione and uric acid as biomarkers of early cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2017, 16, 214-221.	0.7	25
98	Mechanism of nitrite oxidation by eosinophil peroxidase: implications for oxidant production and nitration by eosinophils. Biochemical Journal, 2006, 394, 707-713.	3.7	23
99	Detection of monobromamine, monochloramine and dichloramine using selected ion flow tube mass spectrometry and their relevance as breath markers. Rapid Communications in Mass Spectrometry, 2008, 22, 677-681.	1.5	23
100	Molecular Structure and Dynamic Properties of a Sulfonamide Derivative of Glutathione That Is Produced Under Conditions of Oxidative Stress by Hypochlorous Acid. Chemical Research in Toxicology, 2008, 21, 1011-1016.	3.3	23
101	Factors Influencing Local and Systemic Levels of Plasma Myeloperoxidase in ST-Segment Elevation Acute Myocardial Infarction. American Journal of Cardiology, 2010, 106, 316-322.	1.6	23
102	Neutrophil-mediated oxidation of enkephalins via myeloperoxidase-dependent addition of superoxide. Free Radical Biology and Medicine, 2010, 49, 792-799.	2.9	23
103	Spectral and kinetic evidence for reaction of superoxide with compound I of myeloperoxidase. Free Radical Biology and Medicine, 2011, 51, 2190-2194.	2.9	23
104	Potent inhibition of macrophage migration inhibitory factor (MIF) by myeloperoxidase-dependent oxidation of epicatechins. Biochemical Journal, 2014, 462, 303-314.	3.7	23
105	Evaluating the bactericidal action of hypochlorous acid in culture media. Free Radical Biology and Medicine, 2020, 159, 119-124.	2.9	23
106	Chemical Characterization of Urate Hydroperoxide, A Pro-oxidant Intermediate Generated by Urate Oxidation in Inflammatory and Photoinduced Processes. Chemical Research in Toxicology, 2015, 28, 1556-1566.	3.3	20
107	Oxidative metabolism of amsacrine by the neutrophil enzyme myeloperoxidase. Biochemical Pharmacology, 1992, 44, 1731-1738.	4.4	19
108	Neutrophil-mediated activation of mitoxantrone to metabolites which form adducts with DNA. Cancer Letters, 1997, 113, 173-178.	7.2	19

#	Article	IF	CITATIONS
109	Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function. Free Radical Biology and Medicine, 2015, 89, 498-511.	2.9	19
110	Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation. Archives of Biochemistry and Biophysics, 2018, 646, 120-127.	3.0	19
111	Optimising hydrogen peroxide measurement in exhaled breath condensate. Redox Report, 2006, 11, 78-84.	4.5	18
112	A myeloperoxidase precursor, pro-myeloperoxidase, is present in human plasma and elevated in cardiovascular disease patients. PLoS ONE, 2018, 13, e0192952.	2.5	18
113	Myeloperoxidase inhibition decreases morbidity and oxidative stress in mice with cystic fibrosis-like lung inflammation. Free Radical Biology and Medicine, 2020, 152, 91-99.	2.9	18
114	Neutrophil granule proteins generate bactericidal ammonia chloramine on reaction with hydrogen peroxide. Free Radical Biology and Medicine, 2017, 113, 363-371.	2.9	17
115	Peroxidasin mediates bromination of tyrosine residues in the extracellular matrix. Journal of Biological Chemistry, 2020, 295, 12697-12705.	3.4	16
116	Covalent modification of cytoskeletal proteins in neuronal cells by tryptamine-4,5-dione. Redox Biology, 2014, 2, 983-990.	9.0	15
117	Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: Critical protective actions of ascorbate and thiocyanate. Free Radical Biology and Medicine, 2014, 72, 91-103.	2.9	15
118	Interactions of staphyloxanthin and enterobactin with myeloperoxidase and reactive chlorine species. Archives of Biochemistry and Biophysics, 2018, 646, 80-89.	3.0	15
119	Circulating myeloperoxidase is elevated in septic shock and is associated with systemic organ failure and mortality in critically ill patients. Free Radical Biology and Medicine, 2020, 152, 462-468.	2.9	15
120	Myeloperoxidase Catalyzes the Conjugation of Serotonin to Thiols via Free Radicals and Tryptamine-4,5-dione. Chemical Research in Toxicology, 2012, 25, 2322-2332.	3.3	14
121	Superoxide dismutase protects ribonucleotide reductase from inactivation in yeast. Free Radical Biology and Medicine, 2018, 116, 114-122.	2.9	14
122	Resistance of Streptococcus pneumoniae to Hypothiocyanous Acid Generated by Host Peroxidases. Infection and Immunity, 2022, 90, IAI0053021.	2.2	13
123	The Influence of Superoxide on the Production of Hypochlorous Acid by Human Neutrophils. Free Radical Research Communications, 1991, 12, 47-52.	1.8	10
124	Conjugation of urate-derived electrophiles to proteins during normal metabolism and inflammation. Journal of Biological Chemistry, 2018, 293, 19886-19898.	3.4	10
125	Oxidation of bacillithiol by myeloperoxidase-derived oxidants. Free Radical Biology and Medicine, 2020, 158, 74-83.	2.9	10
126	Bromotyrosines in sputum proteins and treatment effects of terbutaline and budesonide in asthma. Annals of Allergy, Asthma and Immunology, 2009, 103, 348-353.	1.0	9

#	ARTICLE	IF	CITATIONS
127	A novel quinone derived from 5-hydroxyindoleacetic acid reacts with protein: Possible participation of oxidation of serotonin and its metabolite in the development of atherosclerosis. Free Radical Biology and Medicine, 2016, 101, 500-510.	2.9	9
128	A multi-substrate assay for finding physiologically effective inhibitors of myeloperoxidase. Analytical Biochemistry, 2018, 544, 13-21.	2.4	9
129	Neutrophils suppress mucosalâ€associated invariant TÂcells in humans. European Journal of Immunology, 2020, 50, 643-655.	2.9	8
130	<i>Mycobacterium smegmatis</i> Resists the Bactericidal Activity of Hypochlorous Acid Produced in Neutrophil Phagosomes. Journal of Immunology, 2021, 206, 1901-1912.	0.8	8
131	Formation of Calprotectin-Derived Peptides in the Airways of Children with Cystic Fibrosis. Journal of Immunology, 2022, 208, 979-990.	0.8	7
132	Oxidation of bacillithiol during killing of <i>Staphylococcus aureus</i> USA300 inside neutrophil phagosomes. Journal of Leukocyte Biology, 2022, 112, 591-605.	3.3	7
133	Trientine and renin–angiotensin system blockade ameliorate progression of glomerular morphology in hypertensive experimental diabetic nephropathy. Pathology International, 2011, 61, 652-661.	1.3	5
134	Chapter 12. Myeloperoxidase: Structure and Function of the Green Heme Peroxidase of Neutrophils. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 272-308.	0.8	3
135	Reactions of Myeloperoxidase and Production of Hypochlorous Acid in Neutrophil Phagosomes. , 2000, , 58-67.		2
136	Mammalian peroxidases brought into focus. Redox Report, 2000, 5, 167-168.	4.5	1
137	Superoxide-mediated post-translational modification of tyrosine residues. Free Radical Biology and Medicine, 2015, 86, S17-S18.	2.9	1
138	Rust never sleeps: The continuing story of the Iron Bolt. Free Radical Biology and Medicine, 2018, 124, 353-357.	2.9	1
139	Measurements for Sulfide-Mediated Inhibition of Myeloperoxidase Activity. Methods in Molecular Biology, 2019, 2007, 179-203.	0.9	1
140	Crisis for biomedical research in New Zealand. Lancet, The, 1996, 347, 124.	13.7	0
141	BIOMARKERS OF MYELOPEROXIDASE-DERIVED HYPOCHLOROUS ACID. , 2001, , 163-169.		0