Jusef Hassoun

List of Publications by Citations

Source: https://exaly.com/author-pdf/6328357/jusef-hassoun-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

186 16,082 58 124 h-index g-index citations papers 8.4 194 17,291 7.01 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
186	Lithium-ion batteries. A look into the future. <i>Energy and Environmental Science</i> , 2011 , 4, 3287	35.4	1906
185	An improved high-performance lithium-air battery. <i>Nature Chemistry</i> , 2012 , 4, 579-85	17.6	909
184	Nanostructured Sn © Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. <i>Advanced Materials</i> , 2007 , 19, 2336-2340	24	785
183	The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. <i>Advanced Materials</i> , 2012 , 24, 1192-6	24	558
182	A Novel Concept for the Synthesis of an Improved LiFePO[sub 4] Lithium Battery Cathode. <i>Electrochemical and Solid-State Letters</i> , 2002 , 5, A47		518
181	The lithium/air battery: still an emerging system or a practical reality?. <i>Advanced Materials</i> , 2015 , 27, 784-800	24	471
180	A high-performance polymer tin sulfur lithium ion battery. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2371-4	16.4	381
179	A Nanostructured Snt Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance. <i>Advanced Materials</i> , 2008 , 20, 3169-3175	24	363
178	Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. <i>Advanced Materials</i> , 2010 , 22, 5198-201	24	360
177	High-Rate, Long-Life Ni®n Nanostructured Electrodes for Lithium-Ion Batteries. <i>Advanced Materials</i> , 2007 , 19, 1632-1635	24	354
176	An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. <i>Nano Letters</i> , 2014 , 14, 4901-6	11.5	347
175	An advanced lithium ion battery based on high performance electrode materials. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3139-43	16.4	340
174	A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. <i>Nature Communications</i> , 2011 , 2, 516	17.4	301
173	Reversible NaFePO4 electrode for sodium secondary batteries. <i>Electrochemistry Communications</i> , 2012 , 22, 149-152	5.1	294
172	An Advanced Lithium-Sulfur Battery. Advanced Functional Materials, 2013, 23, 1076-1080	15.6	284
171	Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. <i>Nano Letters</i> , 2014 , 14, 1620-6	11.5	241
170	Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2999-3002	16.4	209

169	A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. <i>Energy and Environmental Science</i> , 2011 , 4, 921	35.4	205
168	A new, safe, high-rate and high-energy polymer lithium-ion battery. <i>Advanced Materials</i> , 2009 , 21, 4807	-1204	199
167	High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1400083	21.8	182
166	An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. <i>Nano Letters</i> , 2014 , 14, 657	2 1 7.5	178
165	All Solid-State LithiumBulfur Battery Using a Glass-Type P2S5Ili2S Electrolyte: Benefits on Anode Kinetics. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A646-A651	3.9	173
164	Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. <i>Green Chemistry</i> , 2017 , 19, 3442-3467	10	154
163	Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries. <i>Journal of Power Sources</i> , 2003 , 124, 246-253	8.9	151
162	Hot-pressed, dry, composite, PEO-based electrolyte membranes. <i>Journal of Power Sources</i> , 2003 , 114, 105-112	8.9	147
161	A contribution to the progress of high energy batteries: A metal-free, lithium-ion, siliconBulfur battery. <i>Journal of Power Sources</i> , 2012 , 202, 308-313	8.9	146
160	A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries. <i>Nano Letters</i> , 2012 , 12, 5775-9	11.5	141
159	Electrodeposited NiBn intermetallic electrodes for advanced lithium ion batteries. <i>Journal of Power Sources</i> , 2006 , 160, 1336-1341	8.9	137
158	A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5206-12	9.5	133
157	Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. <i>Journal of Power Sources</i> , 2011 , 196, 343-348	8.9	132
156	Alternative materials for sodium ionBulphur batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5256	13	127
155	A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. <i>Journal of Power Sources</i> , 2016 , 310, 26-31	8.9	118
154	A lithiumBulfur battery using a solid, glass-type P2S5Ii2S electrolyte. <i>Solid State Ionics</i> , 2013 , 244, 48-51	3.3	113
153	Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. <i>Energy and Environmental Science</i> , 2016 , 9, 3210-3220	35.4	108
152	A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode. <i>ACS Applied Materials & Description</i> (2014), 6, 10924-8	9.5	108

151	Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode. <i>Nano Letters</i> , 2015 , 15, 2863-8	11.5	102
150	A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. <i>Nano Letters</i> , 2012 , 12, 4333-5	11.5	102
149	Ternary Sntot Li-ion battery electrode material prepared by high energy ball milling. <i>Electrochemistry Communications</i> , 2007 , 9, 2075-2081	5.1	98
148	Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery. <i>Chemistry of Materials</i> , 2015 , 27, 4604-4611	9.6	91
147	ReviewAdvances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2582-A2588	3.9	89
146	Recent advances in liquid and polymer lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3668		89
145	An Advanced Lithium-Ion Sulfur Battery for High Energy Storage. <i>Advanced Energy Materials</i> , 2015 , 5, 1500481	21.8	84
144	Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 4467-447	,1 3	83
143	Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 294, 180-186	8.9	83
142	An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 3827-33	3.6	81
141	An electrochemical investigation of a Sntott ternary alloy as a negative electrode in Li-ion batteries. <i>Journal of Power Sources</i> , 2007 , 171, 928-931	8.9	81
140	Characteristics of an ionic liquid electrolyte for sodium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 303, 203-207	8.9	77
139	Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery. <i>ACS Applied Materials & Discourse Material</i>	9.5	76
138	Lithium-iron battery: Fe2O3 anode versus LiFePO4 cathode. <i>Electrochemistry Communications</i> , 2011 , 13, 228-231	5.1	73
137	Decomposition of ethylene carbonate on electrodeposited metal thin film anode. <i>Journal of Power Sources</i> , 2010 , 195, 2036-2043	8.9	71
136	An advanced lithium-ion battery based on a nanostructured SnII anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte. <i>Journal of Power Sources</i> , 2010 , 195, 574-579	8.9	70
135	Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery. <i>Electrochimica Acta</i> , 2015 , 173, 613-618	6.7	69
134	A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte. <i>Journal of Power Sources</i> , 2013 , 229, 117-122	8.9	67

(2018-2010)

133	Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application. <i>Journal of Power Sources</i> , 2010 , 195, 6902-6904	8.9	67	
132	A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries. <i>Electrochimica Acta</i> , 2015 , 175, 134-140	6.7	64	
131	Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. <i>ChemSusChem</i> , 2013 , 6, 2245-8	8.3	64	
130	Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. <i>Nano Research</i> , 2017 , 10, 3942-3969	10	63	
129	Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithiumBulfur battery. <i>Journal of Power Sources</i> , 2014 , 265, 14-19	8.9	63	
128	A high power SnII/CIIiFePO4 lithium ion battery. <i>Journal of Power Sources</i> , 2012 , 217, 72-76	8.9	58	
127	Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. <i>Solid State Ionics</i> , 2009 , 180, 1267-1271	3.3	58	
126	A SnSb t nanocomposite as high performance electrode for lithium ion batteries. <i>Electrochimica Acta</i> , 2009 , 54, 4441-4444	6.7	58	
125	The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells. <i>Journal of Power Sources</i> , 2008 , 180, 568-575	8.9	58	
124	Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. <i>ChemSusChem</i> , 2013 , 6, 1037-43	8.3	56	
123	Lithium sulfur and lithium oxygen batteries: new frontiers of sustainable energy storage. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 228-247	5.8	53	
122	Influence of temperature on lithium-oxygen battery behavior. <i>Nano Letters</i> , 2013 , 13, 2971-5	11.5	52	
121	A lithium-ion sulfur battery using a polymer, polysulfide-added membrane. <i>Scientific Reports</i> , 2015 , 5, 7591	4.9	50	
120	Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. <i>ChemPhysChem</i> , 2014 , 15, 2152-5	3.2	50	
119	A rechargeable sodium-ion battery using a nanostructured Sb C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. <i>RSC Advances</i> , 2015 , 5, 48928-48934	3.7	49	
118	High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode. <i>ACS Applied Materials & Material</i>	9.5	49	
117	Lithium Transport Properties in LiMn1HePO4 Olivine Cathodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20855-20863	3.8	48	
116	A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. <i>Journal of Power Sources</i> , 2018 , 377, 26-35	8.9	48	

115	A High-Performance Polymer Tin Sulfur Lithium Ion Battery. <i>Angewandte Chemie</i> , 2010 , 122, 2421-2424	3.6	48
114	The role of the morphology in the response of Sb © nanocomposite electrodes in lithium cells. <i>Journal of Power Sources</i> , 2008 , 183, 339-343	8.9	48
113	Interphase Evolution of a Lithium-Ion/Oxygen Battery. <i>ACS Applied Materials & Distriction</i> , 7, 22638-43	9.5	46
112	A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 15329	13	44
111	Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. <i>Ionics</i> , 2015 , 21, 895-900	2.7	43
110	Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler. <i>ChemSusChem</i> , 2013 , 6, 1400-5	8.3	42
109	A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution. <i>Chemistry - A European Journal</i> , 2016 , 22, 6808-14	4.8	42
108	A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode. <i>ChemSusChem</i> , 2018 , 11, 1512-1520	8.3	41
107	Comparison between microparticles and nanostructured particles of FeSn2 as anode materials for Li-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 7011-7015	8.9	41
106	A Polymer Lithium-Oxygen Battery. <i>Scientific Reports</i> , 2015 , 5, 12307	4.9	40
105	Multiwalled Carbon Nanotubes Anode in Lithium-Ion Battery with LiCoO2, Li[Ni1/3Co1/3Mn1/3]O2, and LiFe1/4Mn1/2Co1/4PO4 Cathodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3225-3232	8.3	39
104	Rechargeable lithium battery using non-flammable electrolyte based on tetraethylene glycol dimethyl ether and olivine cathodes. <i>Journal of Power Sources</i> , 2016 , 334, 146-153	8.9	39
103	Graphene Decorated by Indium Sulfide Nanoparticles as High-Performance Anode for Sodium-Ion Batteries. <i>ACS Applied Materials & Acs Applied </i>	9.5	38
102	Role of the Lithium Salt in the Performance of Lithium Dxygen Batteries: A Comparative Study. <i>ChemElectroChem</i> , 2014 , 1, 47-50	4.3	38
101	Lithiation of an Iron Oxide-Based Anode for Stable, High-Capacity Lithium-Ion Batteries of Porous Carbon E e3O4/Li[Ni0.59Co0.16Mn0.25]O2. <i>Energy Technology</i> , 2014 , 2, 778-785	3.5	38
100	Current status and future perspectives of lithium metal batteries. <i>Journal of Power Sources</i> , 2020 , 480, 228803	8.9	37
99	Poly(ethylenglycol)dimethylether[Ithium bis(trifluoromethanesulfonyl)imide, PEG500DME[LiTFSI, as high viscosity electrolyte for lithium ion batteries. <i>Journal of Power Sources</i> , 2013 , 226, 329-333	8.9	36
98	A lithium ion battery using nanostructured Sna anode, LiFePO4 cathode and polyethylene oxide-based electrolyte. <i>Solid State Ionics</i> , 2011 , 202, 36-39	3.3	35

(2013-2015)

97	A long-life lithium ion sulfur battery exploiting high performance electrodes. <i>Chemical Communications</i> , 2015 , 51, 14540-2	5.8	34	
96	Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode. <i>ACS Applied Materials & Completed Materials & Complet</i>	9.5	34	
95	Electrochemical features of LiMnPO4 olivine prepared by sol-gel pathway. <i>Journal of Alloys and Compounds</i> , 2017 , 693, 730-737	5.7	34	
94	Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. <i>Journal of Power Sources</i> , 2015 , 299, 460-464	8.9	33	
93	Nanostructured tindarbon/LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. Journal of Power Sources, 2015 , 275, 227-233	8.9	33	
92	Investigation of the O2 Electrochemistry in a Polymer Electrolyte Solid-State Cell. <i>Angewandte Chemie</i> , 2011 , 123, 3055-3058	3.6	33	
91	A high capacity, template-electroplated NiBn intermetallic electrode for lithium ion battery. <i>Journal of Power Sources</i> , 2011 , 196, 7767-7770	8.9	32	
90	A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. <i>Materials Letters</i> , 2015 , 139, 329-332	3.3	31	
89	Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. <i>Journal of Colloid and Interface Science</i> , 2020 , 573, 396-408	9.3	31	
88	Influence of the porosity degree of poly(vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries. <i>Journal of Power Sources</i> , 2014 , 263, 29-36	8.9	31	
87	High performance PEO-based polymer electrolytes and their application in rechargeable lithium polymer batteries. <i>Ionics</i> , 2007 , 13, 281-286	2.7	31	
86	A new, high energy Sn-C/Li[Li(0.2)Ni(0.4)/3Co(0.4)/3Mn(1.6/3)]O2 lithium-ion battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 12956-61	9.5	30	
85	High-Capacity NiO(Mesocarbon Microbeads) Conversion Anode for Lithium-Ion Battery. <i>ChemElectroChem</i> , 2015 , 2, 988-994	4.3	30	
84	All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte. <i>Solid State Ionics</i> , 2016 , 296, 13-17	3.3	30	
83	A tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte for advanced lithium ion batteries. <i>Electrochemistry Communications</i> , 2012 , 14, 43-46	5.1	29	
82	A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid. <i>RSC Advances</i> , 2015 , 5, 21360-21365	3.7	29	
81	A New CuO-Fe O -Mesocarbon Microbeads Conversion Anode in a High-Performance Lithium-Ion Battery with a Li Ni Fe Mn O Spinel Cathode. <i>ChemSusChem</i> , 2017 , 10, 1607-1615	8.3	28	
80	Mechanically milled, nanostructured SnC composite anode for lithium ion battery. <i>Electrochimica Acta</i> , 2013 , 90, 690-694	6.7	28	

79	A High Voltage Olivine Cathode for Application in Lithium-Ion Batteries. ChemSusChem, 2016, 9, 223-30	8.3	28
78	Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. <i>Journal of Power Sources</i> , 2018 , 397, 102-112	8.9	27
77	Nickel-Layer Protected, Carbon-Coated Sulfur Electrode for Lithium Battery. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A390-A395	3.9	27
76	A Lithium-Ion Battery based on an Ionic Liquid Electrolyte, Tintarbon Nanostructured Anode, and Li2OarO2-Coated Li[Ni0.8Co0.15Al0.05]O2 Cathode. <i>Energy Technology</i> , 2015 , 3, 632-637	3.5	26
75	A Gel-Polymer Sn-C/LiMn0.5Fe0.5PO4 Battery Using a Fluorine-Free Salt. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 21198-207	9.5	25
74	Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20444-6	3.6	25
73	Low-Polarization Lithium-Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte. <i>ChemSusChem</i> , 2018 , 11, 229-236	8.3	24
72	Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1556-1561		24
71	Electrochemical behaviour of Sn and Snt composite electrodes in LiBOB containing electrolytes. Journal of Power Sources, 2011 , 196, 349-354	8.9	24
70	Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. <i>Nano Research</i> , 2019 , 12, 759-766	10	24
69	Characteristics of glyme electrolytes for sodium battery: nuclear magnetic resonance and electrochemical study. <i>Electrochimica Acta</i> , 2017 , 231, 223-229	6.7	23
68	High capacity tinfron oxide-carbon nanostructured anode for advanced lithium ion battery. <i>Journal of Power Sources</i> , 2015 , 299, 611-616	8.9	23
67	Electrochemical characteristics of iron oxide nanowires during lithium-promoted conversion reaction. <i>Journal of Power Sources</i> , 2014 , 256, 133-136	8.9	23
66	A SiOx-Based Anode in a High-Voltage Lithium-Ion Battery. <i>ChemElectroChem</i> , 2017 , 4, 2164-2168	4.3	22
65	Understanding problems of lithiated anodes in lithium oxygen full-cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10467-10471	13	22
64	Magnetism in lithium-oxygen discharge product. <i>ChemSusChem</i> , 2013 , 6, 1196-202	8.3	22
63	Carbon Composites for a High-Energy LithiumBulfur Battey with a Glyme-Based Electrolyte. <i>ChemElectroChem</i> , 2017 , 4, 209-215	4.3	22
62	High-power lithium polysulfide-carbon battery. <i>Carbon</i> , 2016 , 96, 125-130	10.4	21

(2016-2016)

61	Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode. <i>Materials Chemistry and Physics</i> , 2016 , 180, 82-88	4.4	21	
60	High capacity semi-liquid lithium sulfur cells with enhanced reversibility for application in new-generation energy storage systems. <i>Journal of Power Sources</i> , 2019 , 412, 575-585	8.9	21	
59	Natural Abundance Oxygen-17 NMR Investigation of Lithium Ion Solvation in Glyme-based Electrolytes. <i>Electrochimica Acta</i> , 2016 , 213, 606-612	6.7	20	
58	Characterization of a reversible, low-polarization sodium-oxygen battery. <i>Electrochimica Acta</i> , 2016 , 191, 516-520	6.7	20	
57	A gel polymer membrane for lithium-ion oxygen battery. Solid State Ionics, 2016, 287, 22-27	3.3	20	
56	Investigation of the carbon electrode changes during lithium oxygen cell operation in a tetraglyme-based electrolyte. <i>Electrochemistry Communications</i> , 2013 , 34, 250-253	5.1	20	
55	An advanced configuration TiO2/LiFePO4 polymer lithium ion battery. <i>Journal of Power Sources</i> , 2012 , 217, 459-463	8.9	20	
54	Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery. <i>ACS Applied Materials & Electrolyte</i> 17085-17095	9.5	19	
53	Characteristics of a Graphene Nanoplatelet Anode in Advanced Lithium-Ion Batteries Using Ionic Liquid Added by a Carbonate Electrolyte. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500085	4.6	19	
52	Determination of the safety level of an advanced lithium ion battery having a nanostructured SnII anode, a high voltage LiNi0.5Mn1.5O4 cathode, and a polyvinylidene fluoride-based gel electrolyte. <i>Electrochimica Acta</i> , 2010 , 55, 4194-4200	6.7	18	
51	Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries. <i>Ionics</i> , 2019 , 25, 3129-3141	2.7	17	
50	Enhanced Lithium Oxygen Battery Using a Glyme Electrolyte and Carbon Nanotubes. <i>ACS Applied Materials & Materials</i>	9.5	17	
49	Insight on the Enhanced Reversibility of a Multimetal Layered Oxide for Sodium-Ion Battery. Journal of Physical Chemistry C, 2018 , 122, 23925-23933	3.8	17	
48	The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery. <i>Journal of Power Sources</i> , 2020 , 472, 228424	8.9	15	
47	The Role of Current Collector in Enabling the High Performance of Li/S Battery. <i>ChemistrySelect</i> , 2018 , 3, 10371-10377	1.8	15	
46	Investigating high-performance sulfurthetal nanocomposites for lithium batteries. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2907-2923	5.8	14	
45	A novel polymer electrolyte membrane for application in solid state lithium metal battery. <i>Solid State Ionics</i> , 2018 , 317, 97-102	3.3	14	
44	Insight on the LiS electrochemical process in a composite configuration electrode. <i>New Journal of Chemistry</i> , 2016 , 40, 2935-2943	3.6	14	

43	Quaternary Polyethylene Oxide Electrolytes Containing Ionic Liquid for Lithium Polymer Battery. Journal of the Electrochemical Society, 2016 , 163, A1175-A1180	3.9	14
42	New lithium ion batteries exploiting conversion/alloying anode and LiFe0.25Mn0.5Co0.25PO4 olivine cathode. <i>Electrochimica Acta</i> , 2016 , 220, 384-390	6.7	13
41	Polyethylene oxide electrolyte added by silane-functionalized TiO2 filler for lithium battery. <i>Solid State Ionics</i> , 2014 , 268, 174-178	3.3	13
40	An alternative composite polymer electrolyte for high performances lithium battery. <i>Journal of Power Sources</i> , 2020 , 449, 227508	8.9	13
39	Glyme-based electrolytes for lithium metal batteries using insertion electrodes: An electrochemical study. <i>Electrochimica Acta</i> , 2019 , 306, 85-95	6.7	11
38	High surface area, mesoporous carbon for low-polarization, catalyst-free lithium oxygen battery. <i>Solid State Ionics</i> , 2015 , 278, 133-137	3.3	11
37	Investigation of Mn and Fe Substitution Effects on the Characteristics of High-Voltage LiCo1\(\mathbb{M}\)MxPO4 (x = 0.1, 0.4) Cathodes Prepared by Sol\(\frac{1}{2}\)el Route. ACS Sustainable Chemistry and Engineering, 2020, 8, 278-289	8.3	11
36	Lithium Dxygen Battery Exploiting Highly Concentrated Glyme-Based Electrolytes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12263-12275	6.1	11
35	X-ray Nano-computed Tomography of Electrochemical Conversion in Lithium-ion Battery. <i>ChemSusChem</i> , 2019 , 12, 3550-3561	8.3	10
34	Sulfur Loaded by Nanometric Tin as a New Electrode for High-Performance Lithium/Sulfur Batteries. <i>Energy Technology</i> , 2019 , 7, 1900081	3.5	10
33	A low-cost, high-energy polymer lithium-sulfur cell using a composite electrode and polyethylene oxide (PEO) electrolyte. <i>Ionics</i> , 2016 , 22, 2341-2346	2.7	10
32	Lithium Metal Battery Using LiFeMnPO Olivine Cathode and Pyrrolidinium-Based Ionic Liquid Electrolyte. <i>ACS Omega</i> , 2018 , 3, 8583-8588	3.9	10
31	Hybrid membranes based on sulfated titania nanoparticles as low-cost proton conductors. <i>Ionics</i> , 2013 , 19, 1203-1206	2.7	10
30	Porous Cr2O3@C composite derived from metal organic framework in efficient semi-liquid lithium-sulfur battery. <i>Materials Chemistry and Physics</i> , 2020 , 255, 123484	4.4	10
29	Electrochemical Study of a CuOllarbon Conversion Anode in Ionic Liquid Electrolyte for Application in Li-Ion Batteries. <i>Energy Technology</i> , 2016 , 4, 700-705	3.5	9
28	New Electrode and Electrolyte Configurations for Lithium-Oxygen Battery. <i>Chemistry - A European Journal</i> , 2018 , 24, 3178-3185	4.8	9
27	Towards a High-Performance Lithium-Metal Battery with Glyme Solution and an Olivine Cathode. <i>ChemElectroChem</i> , 2020 , 7, 2376-2388	4.3	8
26	In-situ gelled electrolyte for lithium battery: Electrochemical and Raman characterization. <i>Journal of Power Sources</i> , 2014 , 245, 232-235	8.9	7

(2021-2021)

25	A Stable High-Capacity Lithium-Ion Battery Using a Biomass-Derived Sulfur-Carbon Cathode and Lithiated Silicon Anode. <i>ChemSusChem</i> , 2021 , 14, 3333-3343	8.3	7
24	Lithium Batteries: from early stages to the future 2013 , 21-38		6
23	Towards a High-Performance Lithium-Metal Battery with Glyme Solution and an Olivine Cathode. <i>ChemElectroChem</i> , 2020 , 7, 2344-2344	4.3	5
22	A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode. <i>RSC Advances</i> , 2014 ,	3.7	5
21	Pitch Carbon-coated Lithium Sulfide Electrode for Advanced, Lithium-metal Free-sulfur Batteries. <i>Green</i> , 2011 , 1,		5
20	Glyme-based electrolytes: suitable solutions for next-generation lithium batteries. <i>Green Chemistry</i> , 2022 , 24, 1021-1048	10	5
19	Electrochemical behavior of nanostructured NiO@C anode in a lithium-ion battery using LiNitoMntD2 cathode. <i>Journal of Alloys and Compounds</i> , 2020 , 844, 155365	5.7	4
18	A single layer of Fe3O4@TiO2 submicron spheres as a high-performance electrode for lithium-ion microbatteries. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2675-2687	5.8	4
17	Investigation of the electrochemical features of carbon-coated TiO2 anode for application in lithium-ion battery using high voltage LiNi0.5Mn1.5O4 spinel cathode. <i>Electrochimica Acta</i> , 2016 , 201, 158-164	6.7	4
16	In-Situ X-Ray Diffraction Study of the Li-Alloying Electrochemical Process in a Tin-Carbon Nanocomposite Electrode. <i>Nanoscience and Nanotechnology Letters</i> , 2012 , 4, 132-135	0.8	3
15	LithiumAir and Other Batteries Beyond Lithium-Ion Batteries 2013, 161-190		3
14	Novel Lithium Ion Batteries Based on a Tin Anode and on Manganese Oxide Cathodes. <i>Israel Journal of Chemistry</i> , 2008 , 48, 229-234	3.4	3
13	Lithium-Metal Batteries Using Sustainable Electrolyte Media and Various Cathode Chemistries. <i>Energy & Energy &</i>	4.1	3
12	Characteristics of a gold-doped electrode for application in high-performance lithium-sulfur battery. <i>Journal of Energy Chemistry</i> , 2022 , 64, 116-128	12	3
11	Lithium-Sulfur Batteries: An Advanced Lithium-Sulfur Battery (Adv. Funct. Mater. 8/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 1092-1092	15.6	2
10	A High-Voltage, Multi-Metal LiNi0.35Cu0.1Mn1.45Fe0.1O4 Spinel Cathode for Lithium Batteries. Journal of the Electrochemical Society, 2021 , 168, 030537	3.9	2
9	Synthesis of a High-Capacity FeO@C Conversion Anode and a High-Voltage LiNiMnO Spinel Cathode and Their Combination in a Li-Ion Battery. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8340-8349	6.1	2
8	Novel Lithium-Sulfur Polymer Battery Operating at Moderate Temperature. <i>ChemElectroChem</i> , 2021 , 8, 3971	4.3	2

7	Synthesis and Characterization of a LiFe 0.6 Mn 0.4 PO 4 Olivine Cathode for Application in a New Lithium Polymer Battery. <i>Advanced Sustainable Systems</i> ,2100464	5.9	2
6	Graphene Nanoplatelets: Characteristics of a Graphene Nanoplatelet Anode in Advanced Lithium-Ion Batteries Using Ionic Liquid Added by a Carbonate Electrolyte (Adv. Mater. Interfaces 8/2015). <i>Advanced Materials Interfaces</i> , 2015 , 2, n/a-n/a	4.6	1
5	Degradation of Layered Oxide Cathode in a Sodium Battery: A Detailed Investigation by X-Ray Tomography at the Nanoscale <i>Small Methods</i> , 2021 , 5, e2100596	12.8	1
4	Enhanced Performance of All-Solid-State Li Metal Battery Based on Polyether Electrolytes with LiNO 3 Additive. <i>Macromolecular Chemistry and Physics</i> ,2100396	2.6	О
·			·

3 Lithium Batteries: Status and Future **2014**, 121-162

Kinetics of the Oxygen Electrode in LithiumAir Cells 2013, 233-264

Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure. *Journal of Applied Physics*, **2014**, 115, 163701