Johannes W Schwank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6328336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 2014, 225, 34-51.	4.4	438
2	Improvement of Activity and SO ₂ Tolerance of Sn-Modified MnO _{<i>x</i>} –CeO ₂ Catalysts for NH ₃ -SCR at Low Temperatures. Environmental Science & Technology, 2013, 47, 5294-5301.	10.0	378
3	A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catalysis Today, 2019, 327, 90-115.	4.4	213
4	Promotion of the long-term stability of reforming Ni catalysts by surface alloying. Journal of Catalysis, 2007, 250, 85-93.	6.2	205
5	Controlling Carbon Surface Chemistry by Alloying:Â Carbon Tolerant Reforming Catalyst. Journal of the American Chemical Society, 2006, 128, 11354-11355.	13.7	172
6	Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2018, 232, 246-259.	20.2	160
7	Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sensors and Actuators B: Chemical, 2001, 77, 244-252.	7.8	155
8	Effect of Sn on MnO –CeO2 catalyst for SCR of NO by ammonia: Enhancement of activity and remarkable resistance to SO2. Catalysis Communications, 2012, 27, 54-57.	3.3	155
9	Indium-doped Co 3 O 4 nanorods for catalytic oxidation of CO and C 3 H 6 towards diesel exhaust. Applied Catalysis B: Environmental, 2018, 222, 44-58.	20.2	155
10	Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry. Journal of Catalysis, 2009, 263, 220-227.	6.2	151
11	Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Composites Science and Technology, 2001, 61, 1253-1264.	7.8	150
12	A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts. Journal of Catalysis, 1991, 127, 287-306.	6.2	145
13	Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis. Thin Solid Films, 2003, 436, 119-126.	1.8	133
14	Catalytic gold. Gold Bulletin, 1983, 16, 103-110.	2.7	124
15	Surface degradation of α-naphthalene sulfonate-doped polypyrrole during XPS characterization. Applied Surface Science, 2002, 199, 128-137.	6.1	116
16	Measuring and Relating the Electronic Structures of Nonmodel Supported Catalytic Materials to Their Performance. Journal of the American Chemical Society, 2009, 131, 2747-2754.	13.7	102
17	Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 117, 276-282.	3.5	95
18	Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms. Synthetic Metals, 2004, 140, 15-21.	3.9	87

#	Article	IF	CITATIONS
19	Catalytic activity of ethylene oxidation over Au, Ag and Au–Ag catalysts: Support effect. Catalysis Communications, 2007, 8, 57-64.	3.3	87
20	Sodium-promoted Ag/CeO2 nanospheres for catalytic oxidation of formaldehyde. Chemical Engineering Journal, 2018, 350, 419-428.	12.7	84
21	Gold in bimetallic catalysts. Gold Bulletin, 1985, 18, 2-10.	2.7	74
22	Infrared spectroscopic study of NO reduction by H2 on supported gold catalysts. Journal of Catalysis, 1986, 102, 207-215.	6.2	74
23	Aging, re-dispersion, and catalytic oxidation characteristics of model Pd/Al2O3 automotive three-way catalysts. Applied Catalysis B: Environmental, 2015, 163, 499-509.	20.2	74
24	Influence of Cu-, Fe-, Co-, and Mn-oxide nanoclusters on sensing behavior of SnO2 films. Thin Solid Films, 2004, 467, 209-214.	1.8	73
25	Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films, 2002, 408, 51-58.	1.8	72
26	Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions. Catalysis Today, 2008, 136, 243-248.	4.4	71
27	Characterization of Pt-Sn/carbon hydrogenation catalysts. Applied Catalysis A: General, 2002, 227, 105-115.	4.3	69
28	Chemisorption and FTIR study of bimetallic Pt\$z.sbnd;Au/SiO2 catalysts. Journal of Catalysis, 1990, 121, 441-455.	6.2	68
29	Carbon deposited on Ni/Ce Zr O isooctane autothermal reforming catalysts. Journal of Catalysis, 2007, 251, 374-387.	6.2	68
30	Direct Electrochemical Oxidation of Hydrocarbon Fuels on SOFCs: Improved Carbon Tolerance of Ni Alloy Anodes. Journal of the Electrochemical Society, 2009, 156, B1312.	2.9	66
31	An infrared study of CO adsorption on magnesia-supported ruthenium, gold, and bimetallic ruthenium-gold clusters. Journal of Catalysis, 1980, 61, 19-28.	6.2	63
32	Synthesis of Ni@SiO ₂ Nanotube Particles in a Water-in-Oil Microemulsion Template. Chemistry of Materials, 2012, 24, 2635-2644.	6.7	63
33	Structural and gas response characterization of nano-size SnO2 films deposited by SILD method. Sensors and Actuators B: Chemical, 2003, 96, 602-609.	7.8	62
34	Bimetallic Ru-Au catalysts: Effect of the support. Journal of Catalysis, 1981, 69, 283-291.	6.2	61
35	Selective oxidation of methane over vycor glass, quartz glass and various silica, magnesia and alumina surfaces. Applied Catalysis, 1988, 44, 33-51.	0.8	59
36	FTIR study of bimetallic Pt-Sn/Al2O3 catalysts. Journal of Catalysis, 1992, 138, 491-499.	6.2	59

#	Article	IF	CITATIONS
37	A micromachined ultra-thin-film gas detector. IEEE Transactions on Electron Devices, 1994, 41, 1770-1777.	3.0	59
38	Gold-titania interactions: Temperature dependence of surface area and crystallinity of TiO2 and gold dispersion. Journal of Catalysis, 1984, 87, 265-275.	6.2	55
39	Possibilities of aerosol technology for deposition of SnO2-based films with improved gas sensing characteristics. Materials Science and Engineering C, 2002, 19, 73-77.	7.3	55
40	Techno-economic analysis of fuel cell auxiliary power units as alternative to idling. Journal of Power Sources, 2006, 160, 474-484.	7.8	54
41	Syngas and HDS catalysts derived from sulphido bimetallic clusters. Polyhedron, 1988, 7, 2411-2420.	2.2	53
42	Structural characterization of SnO2 gas sensing films deposited by spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 77, 33-39.	3.5	53
43	Dodecane reforming over nickel-based monolith catalysts. Journal of Catalysis, 2007, 250, 209-221.	6.2	53
44	Electrical conductivity response of dodecylbenzene sulfonic acid-doped polypyrrole films to SO2–N2 mixtures. Synthetic Metals, 2000, 114, 65-72.	3.9	52
45	High-Temperature Photocatalytic Ethylene Oxidation over TiO ₂ . Journal of Physical Chemistry C, 2011, 115, 16537-16543.	3.1	52
46	n-Dodecane reforming over nickel-based monolith catalysts: Deactivation and carbon deposition. Applied Catalysis A: General, 2008, 334, 277-290.	4.3	51
47	Alumina-supported triosmium clusters and ensembles: Characterization by high-resolution transmission electron microscopy. Journal of Catalysis, 1983, 84, 27-37.	6.2	50
48	Packed bed versus microreactor performance in autothermal reforming of isooctane. Catalysis Today, 2005, 110, 68-75.	4.4	50
49	Adhesion and permeability of polyimide-clay nanocomposite films for protective coatings. Journal of Applied Polymer Science, 2003, 89, 2875-2881.	2.6	49
50	Effect of Ce and La dopants in Co ₃ O ₄ nanorods on the catalytic activity of CO and C ₃ H ₆ oxidation. Catalysis Science and Technology, 2019, 9, 1165-1177.	4.1	49
51	Cyclopropane hydrogenation on Ru and Ru\$z.sbnd;Au catalysts. Journal of Catalysis, 1980, 61, 223-231.	6.2	48
52	Polyaniline/zeolite LTA composites and electrical conductivity response towards CO. Polymer, 2005, 46, 947-953.	3.8	48
53	Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N2 mixtures. Polymer International, 2005, 54, 1126-1133.	3.1	48
54	Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts. Applied Catalysis B: Environmental, 2020, 267, 118371.	20.2	47

#	Article	IF	CITATIONS
55	Fischer-Tropsch synthesis on bimetallic ruthenium-gold catalysts. Journal of Catalysis, 1985, 93, 256-269.	6.2	45
56	Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chemical Engineering Journal, 2020, 402, 125911.	12.7	45
57	Isotopic oxygen exchange on supported Ru and Au catalysts. Journal of Catalysis, 1980, 63, 415-424.	6.2	44
58	Microstructure and reactivity of supported bimetallic platinum-gold catalysts. Journal of Catalysis, 1989, 120, 353-369.	6.2	42
59	Thermal decomposition of dispersed and bulk-like NOx species in model NOx trap materials. Applied Catalysis B: Environmental, 2005, 61, 164-175.	20.2	42
60	Polypyrrole/poly(methylmethacrylate) blend as selective sensor for acetone in lacquer. Talanta, 2003, 60, 25-30.	5.5	41
61	Preparation of supported POM catalysts for liquid phase oxydehydration of glycerol to acrylic acid. Journal of Molecular Catalysis A, 2013, 380, 49-56.	4.8	41
62	Thermally Induced Restructuring of Pd@CeO ₂ and Pd@SiO ₂ Nanoparticles as a Strategy for Enhancing Low-Temperature Catalytic Activity. ACS Catalysis, 2020, 10, 1731-1741.	11.2	39
63	Electrical conductivity response of polyaniline films to ethanol–water mixtures. Synthetic Metals, 2002, 129, 303-308.	3.9	37
64	Oxygen Sensors: Materials and Applications. MRS Bulletin, 1999, 24, 44-48.	3.5	36
65	Selective conductivity response of polypyrrole-based sensor on flammable chemicals. Reactive and Functional Polymers, 2004, 61, 11-22.	4.1	36
66	Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides. Measurement Science and Technology, 2006, 17, 1861-1869.	2.6	36
67	Nickel-catalyzed autothermal reforming of jet fuel surrogates: n-Dodecane, tetralin, and their mixture. Journal of Power Sources, 2007, 164, 344-350.	7.8	36
68	Fe ₂ O ₃ @SiTi core–shell catalyst for the selective catalytic reduction of NO _x with NH ₃ : activity improvement and HCl tolerance. Catalysis Science and Technology, 2018, 8, 3313-3320.	4.1	36
69	Magnesium oxide as a catalyst support: The influence of chlorine. Applied Catalysis, 1982, 3, 131-139.	0.8	35
70	Integrated ultra-thin-film gas sensors. Sensors and Actuators B: Chemical, 1994, 20, 55-62.	7.8	35
71	Evaluation of Ni/SDC as anode material for dry CH4 fueled Solid Oxide Fuel Cells. Journal of Power Sources, 2014, 248, 239-245.	7.8	35
72	Progress and future challenges in passive NO adsorption over Pd/zeolite catalysts. Catalysis Science and Technology, 2021, 11, 5986-6000.	4.1	35

#	Article	IF	CITATIONS
73	Influence of chlorine on the surface area and morphology of TiO2. Applied Catalysis, 1985, 14, 119-131.	0.8	33
74	Determination of diffusion in polycrystalline platinum thin films. Journal of Applied Physics, 1999, 86, 4902-4907.	2.5	33
75	Pd model catalysts: Effect of air pulse length during redox aging on Pd redispersion. Applied Catalysis B: Environmental, 2018, 223, 76-90.	20.2	33
76	Insight into hydrothermal aging effect on deactivation of Pd/SSZ-13 as low-temperature NO adsorption catalyst: Effect of dealumination and Pd mobility. Applied Catalysis B: Environmental, 2021, 286, 119874.	20.2	33
77	Microstructure of a Pd/ceria–zirconia catalyst after high-temperature aging. Catalysis Letters, 1998, 53, 37-42.	2.6	32
78	Electrical conductivity responses of polyaniline films to SO2–N2 mixtures: effect of dopant type and doping level. Reactive and Functional Polymers, 2002, 53, 29-37.	4.1	32
79	DRIFTS study of photo-assisted catalytic CO + NO redox reaction over CuO/CeO2-TiO2. Catalysis Today, 2015, 258, 139-147.	4.4	32
80	One-pot oxydehydration of glycerol to value-added compounds over metal-doped SiW/HZSM-5 catalysts: Effect of metal type and loading. Chemical Engineering Journal, 2015, 275, 113-124.	12.7	32
81	Effects of oxide supports on ethylene epoxidation activity over Ag-based catalysts. Journal of Molecular Catalysis A, 2012, 358, 58-66.	4.8	31
82	Gas sensing based on surface oxidation/reduction of platinum-titania thin films I. Sensing film activation and characterization. Applied Surface Science, 1998, 125, 187-198.	6.1	30
83	Influence of thiophene on the isooctane reforming activity of Ni-based catalysts. Journal of Catalysis, 2010, 271, 140-152.	6.2	30
84	Structure sensitivity of reactions between cyclopropane and hydrogen on supported ruthenium catalysts. Journal of Catalysis, 1987, 108, 495-500.	6.2	29
85	Pd model catalysts: Effect of aging environment and lean redispersion. Applied Catalysis B: Environmental, 2016, 183, 343-360.	20.2	29
86	Effect of preparation methods on the catalytic activity of La0.9Sr0.1CoO3 perovskite for CO and C3H6 oxidation. Catalysis Today, 2021, 364, 7-15.	4.4	29
87	The microstructure of bimetallic Ru\$z.sbnd;Cu/SiO2 catalysts: A chemisorption and analytical electron microscopy study. Journal of Catalysis, 1986, 100, 446-457.	6.2	28
88	Effect of metal particle size on sulfur tolerance of Ni catalysts during autothermal reforming of isooctane. Applied Catalysis A: General, 2011, 400, 203-214.	4.3	28
89	Neopentane reactions over bimetallic Pt\$z.sbnd;Sn/AI2O3 and Pt\$z.sbnd;Au/SiO2 catalysts. Journal of Catalysis, 1991, 132, 451-464.	6.2	27
90	Understanding the chemistry during the preparation of Pd/SSZ-13 for the low-temperature NO adsorption: The role of NH4-SSZ-13 support. Applied Catalysis B: Environmental, 2021, 282, 119611.	20.2	27

#	Article	IF	CITATIONS
91	Metal dispersion of bimetallic catalysts via stepwise chemisorption and surface titration I. Ru\$z.sbnd;Au/SiO2. Journal of Catalysis, 1985, 95, 271-283.	6.2	26
92	Morphology and surface uniformity growth in magnesium oxide dehydration. The Journal of Physical Chemistry, 1985, 89, 3761-3766.	2.9	25
93	Temperature-programmed desorption of methanol and oxidation of methanol on Pt–Sn/Al2O3 catalysts. Chemical Engineering Journal, 2004, 97, 161-171.	12.7	25
94	Induced interaction between polypyrrole and SO2 via molecular sieve 13X. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 136, 78-86.	3.5	24
95	n-Dodecane reforming over monolith-based Ni catalysts: SEM study of axial carbon distribution profile. Applied Catalysis A: General, 2009, 356, 137-147.	4.3	24
96	In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation. Chemical Communications, 2014, 50, 1804.	4.1	24
97	Electrical conductivity responses and interactions of poly(3-thiopheneacetic acid)/zeolites L, mordenite, beta and H2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 140, 23-30.	3.5	23
98	Strontium-doped samarium manganite as cathode materials for oxygen reduction reaction in solid oxide fuel cells. Journal of Power Sources, 2015, 284, 272-278.	7.8	23
99	Electronic metal-support interactions in Pt/FeO nanospheres for CO oxidation. Catalysis Today, 2020, 355, 539-546.	4.4	23
100	Isooctane decomposition and carbon deposition over ceria–zirconia supported nickel catalysts. Applied Catalysis A: General, 2010, 386, 83-93.	4.3	22
101	Gasification characteristics of carbon species derived from model reforming compound over Ni/Ce–Zr–O catalysts. Catalysis Today, 2014, 233, 14-20.	4.4	22
102	Effect of Sn addition on improving the stability of Ni-Ce0.8Sm0.2O1.9 anode material for solid oxide fuel cells fed with dry CH4. Catalysis Today, 2019, 330, 209-216.	4.4	22
103	A micromachined surface work-function gas sensor for low-pressure oxygen detection. Sensors and Actuators B: Chemical, 1997, 42, 195-204.	7.8	21
104	Nature of the two-step temperature-programmed decomposition of PdO supported on alumina. Applied Catalysis A: General, 2014, 475, 420-426.	4.3	21
105	Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	21
106	Survivability of a silicon-based microelectronic gas-detector structure for high-temperature flow applications. Sensors and Actuators B: Chemical, 1996, 37, 27-35.	7.8	20
107	Gas sensing based on surface oxidation/reduction of platinum-titania thin films II. The role of chemisorbed oxygen in film sensitization. Applied Surface Science, 1998, 125, 199-207.	6.1	20
108	TPR Investigation of bimetallic Ru-Cu samples supported on SiO2, Al2O3 and MgO. Journal of Thermal Analysis, 1987, 32, 471-483.	0.6	19

#	Article	IF	CITATIONS
109	iso-Octane partial oxidation over Ni-Sn/Ce0.75Zr0.25O2 catalysts. Catalysis Today, 2008, 136, 214-221.	4.4	19
110	Facile, one-pot synthesis of Pd@CeO2 core@shell nanoparticles in aqueous environment by controlled hydrolysis of metalloorganic cerium precursor. Materials Letters, 2017, 206, 105-108.	2.6	19
111	Palladium redispersion at high temperature within the Pd@SiO2 core@shell structure. Catalysis Communications, 2018, 108, 73-76.	3.3	19
112	Temperature Programmed Desorption Spectra of Systems with Concentration Gradients in the Solid Lattice. The Journal of Physical Chemistry, 1996, 100, 11389-11395.	2.9	18
113	Activation of passive NOx adsorbers by pretreatment with reaction gas mixture. Chemical Engineering Journal, 2020, 399, 125727.	12.7	18
114	Ethane and propane hydrogenolysis on Ru catalysts. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 2509.	1.0	17
115	Solid state synthesis and characterization of model hydrodesulfurization catalysts. Journal of Catalysis, 1989, 119, 388-399.	6.2	17
116	The Effect of Nb Loading on Catalytic Properties of Ni/Ce0.75Zr0.25O2 Catalyst for Methane Partial Oxidation. Journal of Natural Gas Chemistry, 2007, 16, 227-234.	1.8	17
117	Reactivity study of CO+NO reaction over Pd/Al2O3 and Pd/CeZrO2 catalysts. Catalysis Today, 2019, 323, 148-158.	4.4	17
118	Effect of small amounts of ethane on the selective oxidation of methane over silicic acid and quartz glass surfaces. Journal of the Chemical Society Chemical Communications, 1988, , 1298.	2.0	16
119	Characterization of carbon-supported ruthenium–tin catalysts by high-resolution electron microscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2803-2807.	1.7	16
120	The effects of exposure time and pressure on the temperature-programmed desorption spectra of systems with bulk states. Surface Science, 1996, 355, L385-L392.	1.9	16
121	A silicon micromachined conductometric gas sensor with a maskless Pt sensing film deposited by selected-area CVD. Sensors and Actuators B: Chemical, 1996, 36, 312-319.	7.8	16
122	Ethylene Epoxidation Activity Over Ag-Based Catalysts on Different Nanocrystalline Perovskite Titanate Supports. Catalysis Letters, 2012, 142, 991-1002.	2.6	16
123	Application of high-resolution analytical electron microscopy to the analysis of automotive catalysts. Industrial & Engineering Chemistry Product Research and Development, 1985, 24, 6-10.	0.5	15
124	CO hydrogenation catalyzed by alumina-supported osmium: Particle size effects. Journal of Catalysis, 1985, 95, 370-384.	6.2	15
125	The influence of hydrazine reduction on metal dispersion and support morphology in bimetallic Ru\$z.sbnd;Au/MgO catalysts. Journal of Catalysis, 1986, 98, 191-203.	6.2	15
126	Film Structure and Conductometric Hydrogen-Gas-Sensing Characteristics of Ultrathin Platinum Films. Langmuir, 1999, 15, 3307-3311.	3.5	15

#	Article	IF	CITATIONS
127	Carbon monoxide desorption from platinum chemically modified by sulfur. Surface Science, 2000, 464, 153-164.	1.9	15
128	Pt–Sn/Al2O3 catalysts: effect of catalyst preparation and chemisorption methods on H2 and O2 uptake. Chemical Engineering Journal, 2004, 98, 99-104.	12.7	15
129	Oxidation of Oxygenated Volatile Organic Compound Over Monometallic and Bimetallic Ru–Au Catalysts. Catalysis Letters, 2010, 138, 160-170.	2.6	15
130	Solid-state transformation of hollow silica microspheres into hierarchical ZSM-5 having tunable mesopores. Catalysis Communications, 2010, 11, 700-704.	3.3	15
131	Preparation of Au/Y2O3 and Au/NiO catalysts by co-precipitation and their oxidation activities. Materials Chemistry and Physics, 2011, 126, 212-219.	4.0	15
132	Comparative study on the influence of second metals on Ag-loaded mesoporous SrTiO3 catalysts for ethylene oxide evolution. Journal of Molecular Catalysis A, 2013, 372, 175-182.	4.8	15
133	Pd model catalysts: Effect of aging duration on lean redispersion. Applied Catalysis B: Environmental, 2016, 185, 189-202.	20.2	15
134	Preparation and activity of solid-state hydrodesulfurization catalysts. Journal of Catalysis, 1989, 120, 487-492.	6.2	14
135	Characteristics of silicon-micromachined gas sensors based on Pt/TiOx thin films. Sensors and Actuators B: Chemical, 1997, 42, 205-215.	7.8	14
136	Bimetallic catalysts: Discoveries, concepts, and applications. By John H. Sinfelt, John Wiley & Sons, 1983. XI+ 164 pp. AICHE Journal, 1985, 31, 1405-1405.	3.6	13
137	The role of the zeolite in the hydrogenolysis of C2 and C3 hydrocarbons on RuNaY catalysts. Journal of Catalysis, 1986, 97, 549-560.	6.2	13
138	Synthesis and evaluation of mesopore structured ZSM-5 and a CuZSM-5 catalyst for NH ₃ -SCR reaction: studies of simulated exhaust and engine bench testing. RSC Advances, 2016, 6, 102570-102581.	3.6	13
139	Interaction of Hydrocarbons and Water With ZSM5. Studies in Surface Science and Catalysis, 1989, , 847-856.	1.5	12
140	A selected-area CVD method for deposition of sensing films on monolithically integrated gas detectors. IEEE Electron Device Letters, 1995, 16, 217-219.	3.9	12
141	A meanâ€field modeling study of the interaction between hydrogen and a palladium (110) single crystal. Journal of Chemical Physics, 1996, 105, 8398-8403.	3.0	12
142	In-situ elevated temperature imaging of thin films with a microfabricated hot stage for scanning probe microscopes. Applied Surface Science, 1999, 141, 119-128.	6.1	12
143	Reactivity of NH3 over (Fe)/H-ZSM-5 zeolite: Studies of temperature-programmed and steady-state reactions. Catalysis Today, 2011, 175, 2-11.	4.4	12
144	Improving the thermal stability and n-butanol oxidation activity of Ag-TiO2 catalysts by controlling the catalyst architecture and reaction conditions. Applied Catalysis B: Environmental, 2021, 297, 120476.	20.2	12

#	Article	IF	CITATIONS
145	New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate. Frontiers of Chemical Science and Engineering, 2018, 12, 194-208.	4.4	12
146	Model hydrodesulfurization catalysts: Solid state synthesis and characterization of iron containing molybdenum sulphide. Applied Catalysis, 1989, 56, 281-295.	0.8	11
147	A thermogravimetric determination of dispersed and bulk-like barium species supported on Î ³ -alumina. Journal of Materials Chemistry, 2005, 15, 366-368.	6.7	11
148	Activity of Ethylene Epoxidation over High Surface Area Alumina Support Au-Ag Catalysts. Journal of Chemical Engineering of Japan, 2006, 39, 321-326.	0.6	11
149	Resistance measurements of platinum-titania thin film gas detectors in ultra-high vacuum (UHV) and reactive ion etcher (RIE) systems. Sensors and Actuators B: Chemical, 1997, 41, 143-151.	7.8	10
150	Hydrogen production from partial oxidation of iso-octane over Ni/Ce0.75Zr0.25O2 and Ni/β″-Al2O3 catalysts. Applied Catalysis A: General, 2006, 302, 133-139.	4.3	10
151	Effect of diluent gas on ethylene epoxidation activity over various Ag-based catalysts on selective oxide supports. Journal of Molecular Catalysis A, 2014, 386, 5-13.	4.8	10
152	Crystalline structure refinements and properties of Ni/TiO2 and Ni/TiO2-Ce catalysts and application to catalytic reaction of "CO+NOâ€. Applied Catalysis A: General, 2014, 478, 21-29.	4.3	10
153	Improvement of CO Sensitivity in GaN-Based Gas Sensors. IEICE Transactions on Electronics, 2006, E89-C, 1047-1051.	0.6	10
154	Adsorption-induced conductance changes of thin Pt films and PtPd/TiO2 gas sensors. Applied Surface Science, 1987, 29, 341-360.	6.1	9
155	A microstructural investigation of model solid state hydrodesulfurization catalysts. Journal of Solid State Chemistry, 1990, 87, 378-395.	2.9	9
156	Hydrogen desorption from polycrystalline platinum chemically modified by sulfur pre-coverage. Surface Science, 2002, 501, 214-234.	1.9	9
157	Structural evolution of NiAu nanoparticles under ambient conditions directly revealed by atom-resolved imaging combined with DFT simulation. Nanoscale, 2014, 6, 12898-12904.	5.6	9
158	CO hydrogenation over alumina-supported sulfide cluster catalysts. AICHE Journal, 1989, 35, 109-119.	3.6	8
159	<title>Optimization of thin-film gas sensors for environmental monitoring through theoretical modeling</title> . , 1999, , .		7
160	Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith. Frontiers of Chemical Science and Engineering, 2013, 7, 270-278.	4.4	7
161	Characterization and hydrodesulfurization activity studies of unpromoted molybdenum sulfides prepared by elemental solid state reaction. Journal of Catalysis, 1992, 137, 333-345.	6.2	6
162	Characterization of carbon supported catalysts by electron microscopy techniques. Materials Chemistry and Physics, 1996, 44, 145-150.	4.0	6

#	Article	IF	CITATIONS
163	Successive ionic layer deposition: possibilities for gas sensor applications. Journal of Physics: Conference Series, 2005, 15, 45-50.	0.4	6
164	Steam effect on NO x reduction over lean NO x trap Pt–BaO/Al2O3 model catalyst. Topics in Catalysis, 2007, 46, 39-47.	2.8	6
165	Effects of synthesis conditions on dimensions, structure, and oxygen content of photocatalytically active titania nanotubes. Journal of Materials Research, 2010, 25, 89-95.	2.6	5
166	Characterization of uniform, nanodispersed NOx storage catalyst materials synthesized by successive ionic layer deposition. Catalysis Communications, 2010, 11, 896-900.	3.3	5
167	Metal dispersion of bimetallic catalysts via stepwise chemisorption and surface titration II. Ru\$z.sbnd;Au/MgO. Journal of Catalysis, 1985, 95, 284-288.	6.2	4
168	Solid state synthesis and activity of a Cu-containing hydrodesulphurization catalyst. Journal of the Chemical Society Chemical Communications, 1989, , 1833.	2.0	4
169	Chemisorption studies of promoted solid-state HDS catalysts. Journal of Catalysis, 1992, 135, 427-433.	6.2	4
170	Gas Sensing Characteristics of Ultrathin TiO2-xFilms Investigated with XPS, TPD andIn SituResistance Measurements. Surface and Interface Analysis, 1997, 25, 76-80.	1.8	4
171	Using of SILD technology for surface modification of SnO2 films for gas sensor applications. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	4
172	The effect of downstream synthesis gas feeding on Fischer–Tropsch product distributions. Fuel Processing Technology, 2009, 90, 1009-1015.	7.2	4
173	Chemical surface modification of beaded activated carbon: A strategy to inhibit heel accumulation from VOC. Journal of Industrial and Engineering Chemistry, 2021, 103, 205-215.	5.8	4
174	Electron microdiffraction study of bimetallic Ru\$z.sbnd;Au/MgO catalysts. Journal of Catalysis, 1986, 100, 437-445.	6.2	3
175	Higher-order corrections to the pi criterion using center manifold theory. , 0, , .		3
176	Recent Developments in Mixed Ionic and Electronic Conducting Electrodes for the Alkali Metal Thermal Electric Converter (AMTEC). AIP Conference Proceedings, 2003, , .	0.4	3
177	Investigation on NOx Storage Characteristics and Aging Influence of Lean NOx Trap Model Catalyst BaO-Pt/Al2O3. , 0, , .		3
178	Fabrication of conductometric gas-sensing films by selected area chemical-vapor deposition. AICHE Journal, 1997, 43, 2760-2764.	3.6	2
179	Effect of Support on Ethylene Epoxidation on Ag, Au, and Au-Ag Catalysts. , 2008, , 283-296.		2
180	Catalytic reforming of liquid hydrocarbons for on-board solid oxide fuel cell auxiliary power units. Catalysis, 0, , 56-93.	1.0	2

#	Article	IF	CITATIONS
181	Stabilizing Highly Dispersed Halo Sites in Thermally Restructured Palladium Core@Shell Nanoparticles for Improved Catalyst Activity and Durability. ACS Applied Nano Materials, 2021, 4, 10985-10998.	5.0	2
182	Characterization of Multilayer Thin Film Structures for Gas Sensor Applications. Materials Research Society Symposia Proceedings, 1995, 382, 477.	0.1	1
183	Ni-Based Monolith n-Dodecane Reforming Catalysts: Optimization of O/C and Effect of Ni Interaction with Cordierite. Industrial & amp; Engineering Chemistry Research, 2015, 54, 4136-4147.	3.7	1
184	Electron microscopy and krypton adsorption characterization of high-purity MgO powder. Journal of Materials Research, 1986, 1, 114-119.	2.6	0
185	Microstructure and Activity of Thin Films for a Microelectronic Gas Sensor. Materials Research Society Symposia Proceedings, 1995, 403, 559.	0.1	0
186	Erratum to "The effects of exposure time and pressure on the temperature-programmed desorption spectra of systems with bulk states―[Surface Science 355 (1996) L385]. Surface Science, 1996, 367, L32.	1.9	0