Zhifang Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6327971/publications.pdf Version: 2024-02-01

ZHIEANCLIN

#	Article	IF	CITATIONS
1	Circular Airy beam with an arbitrary conical angle beyond the paraxial approximation. Physical Review A, 2022, 105, .	2.5	8
2	Optical gradient force in the absence of light intensity gradient. Physical Review B, 2021, 103, .	3.2	11
3	Quantitative study of conservative gradient force and non-conservative scattering force exerted on a spherical particle in optical tweezers. Optics Express, 2021, 29, 25377.	3.4	5
4	Controlling fluctuations in small structures: Hidden information in the noise. Physical Review B, 2021, 104, .	3.2	2
5	Lateral optical force along the translationally invariant direction of optical fields formed by circularly polarized plane waves. Physical Review A, 2021, 104, .	2.5	1
6	Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters. Nature Communications, 2021, 12, 6597.	12.8	18
7	Lateral Optical Force due to the Breaking of Electric-Magnetic Symmetry. Physical Review Letters, 2020, 125, 073901.	7.8	21
8	General formulations for computing the optical gradient and scattering forces on a spherical chiral particle immersed in generic monochromatic optical fields. Physical Review A, 2020, 101, .	2.5	18
9	Optical binding and lateral forces on chiral particles in linearly polarized plane waves. Physical Review A, 2020, 101, .	2.5	8
10	Electric Symmetric Dipole Modes Enabling Retroreflection from an Array Consisting of Homogeneous Isotropic Linear Dielectric Rods. Advanced Optical Materials, 2020, 8, 2000452.	7.3	9
11	Analytically decomposing optical force on a spherical particle in Bessel beams into conservative and non-conservative parts. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 67.	2.1	6
12	Tailoring the gradient and scattering forces for longitudinal sorting of generic-size chiral particles. Optics Letters, 2020, 45, 4515.	3.3	7
13	Approach to fully decomposing an optical force into conservative and nonconservative components. Physical Review A, 2019, 100, .	2.5	17
14	Optical pulling at macroscopic distances. Science Advances, 2019, 5, eaau7814.	10.3	42
15	Abruptly autofocusing property and optical manipulation of circular Airy beams. Physical Review A, 2019, 99, .	2.5	59
16	Scattering of electromagnetic waves from a cone with conformal mapping: Application to scanning near-field optical microscope. Physical Review B, 2018, 97, .	3.2	28
17	Gradient and scattering forces of anti-reflection-coated spheres in an aplanatic beam. Scientific Reports, 2018, 8, 17423.	3.3	14
18	Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance. Physical Review A, 2017, 96, .	2.5	19

Zhifang Lin

#	Article	IF	CITATIONS
19	Manipulating Unidirectional Edge States Via Magnetic Plasmonic Gradient Metasurfaces. Plasmonics, 2017, 12, 1079-1090.	3.4	17
20	Tailoring Optical Gradient Force and Optical Scattering and Absorption Force. Scientific Reports, 2017, 7, 18042.	3.3	51
21	Chirality sorting using two-wave-interference–induced lateral optical force. Physical Review A, 2016, 93, .	2.5	57
22	Unidirectionally molding electromagnetic waves with magnetic metamaterials and metasurfaces. , 2016, , .		0
23	Optical Twist Induced by Plasmonic Resonance. Scientific Reports, 2016, 6, 27927.	3.3	8
24	Extremely strong bipolar optical interactions in paired graphene nanoribbons. Physical Chemistry Chemical Physics, 2016, 18, 8561-8569.	2.8	6
25	Optical force on toroidal nanostructures: Toroidal dipole versus renormalized electric dipole. Physical Review A, 2015, 92, .	2.5	37
26	Tailoring azimuthal optical force on lossy chiral particles in Bessel beams. Physical Review A, 2014, 90,	2.5	40
27	Negative Optical Torque. Scientific Reports, 2014, 4, 6386.	3.3	51
28	Dynamical and phase-diagram study on stable optical pulling force in Bessel beams. Physical Review A, 2013, 87, .	2.5	72
29	Self-biased magnetic left-handed material. Applied Physics Letters, 2013, 102, .	3.3	10
30	Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance. Applied Physics Letters, 2012, 101, 081912.	3.3	31
31	Robust and Tunable One-Way Magnetic Surface Plasmon Waveguide: An Experimental Demonstration. Plasmonics, 2012, 7, 287-291.	3.4	16
32	Dielectric-based extremely-low-loss subwavelength-light transport at the nanoscale: An alternative to surface-plasmon-mediated waveguiding. Physical Review A, 2011, 83, .	2.5	26
33	Optical pulling force. Nature Photonics, 2011, 5, 531-534.	31.4	568
34	Magnetic surface plasmon-induced tunable photonic bandgaps in two-dimensional magnetic photonic crystals. Applied Physics A: Materials Science and Processing, 2011, 105, 789-793.	2.3	5
35	PHOTONIC MOLECULES ORGANIZED BY LIGHT. , 2011, , 113-140.		0
36	Molding reflection from metamaterials based on magnetic surface plasmons. Physical Review B, 2011, 84, .	3.2	66

Zhifang Lin

#	Article	IF	CITATIONS
37	Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials. Applied Physics Letters, 2010, 97, .	3.3	78
38	Graded index photonic hole: Analytical and rigorous full wave solution. Physical Review B, 2010, 82, .	3.2	33
39	A simple design of an artificial electromagnetic black hole. Journal of Applied Physics, 2010, 108, .	2.5	53
40	One-way edge mode in a magneto-optical honeycomb photonic crystal. Physical Review B, 2009, 80, .	3.2	170
41	Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays. Physical Review A, 2009, 79, .	2.5	38
42	Effective-medium theory for anisotropic magnetic metamaterials. Physical Review B, 2009, 80, .	3.2	48
43	Formation of robust and completely tunable resonant photonic band gaps. Physical Review B, 2008, 78, .	3.2	65
44	Molding the flow of electromagnetic waves and creating a mirage with a magnetic field. Physical Review A, 2008, 78, .	2.5	9
45	Magnetic resonance of slotted circular cylinder resonators. Journal of Applied Physics, 2008, 104, 014907.	2.5	13
46	Electromagnetic scattering by optically anisotropic magnetic particle. Physical Review E, 2004, 69, 056614.	2.1	78
47	LATTICE BOLTZMANN SIMULATION OF DEFORMABLE MEMBRANE IN FLUID. International Journal of Modern Physics B, 2003, 17, 149-152.	2.0	0
48	DYNAMIC SIMULATION STUDIES OF STRUCTURAL FORMATION AND TRANSITION IN ELECTRO-MAGNETO-RHEOLOGICAL FLUIDS. International Journal of Modern Physics B, 2001, 15, 842-850.	2.0	6
49	Dynamic response times of electrorheological fluids in steady shear. Journal of Applied Physics, 1998, 83, 1125-1131.	2.5	21