James L Mcclelland

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6327820/james-l-mcclelland-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

136 papers

44,364 citations

61 h-index 161 g-index

161 ext. papers

49,732 ext. citations

5.4 avg, IF

7.53 L-index

#	Paper	IF	Citations
136	Do estimates of numerosity really adhere to Weber's law? A reexamination of two case studies. <i>Psychonomic Bulletin and Review</i> , 2021 , 28, 158-168	4.1	4
135	Transforming task representations to perform novel tasks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 32970-32981	11.5	1
134	Intrusions into the shadow of attention: A new take on illusory conjunctions. <i>Attention, Perception, and Psychophysics</i> , 2020 , 82, 564-584	2	2
133	Exemplar models are useful and deep neural networks overcome their limitations: A commentary on Ambridge (2020). <i>First Language</i> , 2020 , 40, 612-615	1.5	2
132	Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics. <i>Developmental Science</i> , 2020 , 23, e12940	4.5	12
131	Value-based decision making: An interactive activation perspective. <i>Psychological Review</i> , 2020 , 127, 153-185	6.3	13
130	Quasi-compositional mapping from form to meaning: a neural network-based approach to capturing neural responses during human language comprehension. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190313	5.8	11
129	Placing language in an integrated understanding system: Next steps toward human-level performance in neural language models. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25966-25974	11.5	13
128	Integration of new information in memory: new insights from a complementary learning systems perspective. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190637	5.8	16
127	A mathematical theory of semantic development in deep neural networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11537-11546	11.5	43
126	Developing the knowledge of number digits in a child-like robot. <i>Nature Machine Intelligence</i> , 2019 , 1, 594-605	22.5	11
125	Modelling the N400 brain potential as change in a probabilistic representation of meaning. <i>Nature Human Behaviour</i> , 2018 , 2, 693-705	12.8	92
124	Bayesian statistics to test Bayes optimality. <i>Behavioral and Brain Sciences</i> , 2018 , 41, e246	0.9	
123	Different presentations of a mathematical concept can support learning in complementary ways Journal of Educational Psychology, 2018 , 110, 664-682	5.3	4
122	Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. <i>Psychological Review</i> , 2018 , 125, 293-328	6.3	74
121	The dynamics of multimodal integration: The averaging diffusion model. <i>Psychonomic Bulletin and Review</i> , 2017 , 24, 1819-1843	4.1	7
120	The Unit Circle as a Grounded Conceptual Structure in Precalculus Trigonometry 2017 , 247-269		

119	Building on prior knowledge without building it in. Behavioral and Brain Sciences, 2017, 40, e268	0.9	3
118	Interactive Processing Through Spreading Activation 2017, 37-60		1
117	What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. <i>Trends in Cognitive Sciences</i> , 2016 , 20, 512-534	14	229
116	Bayesian analysis of simulation-based models. <i>Journal of Mathematical Psychology</i> , 2016 , 72, 191-199	1.2	19
115	You shall know an object by the company it keeps: An investigation of semantic representations derived from object co-occurrence in visual scenes. <i>Neuropsychologia</i> , 2015 , 76, 52-61	3.2	33
114	Resilient properties of thought and experience. <i>Language, Cognition and Neuroscience</i> , 2015 , 30, 917-9	1&.4	1
113	Payoff Information Biases a Fast Guess Process in Perceptual Decision Making under Deadline Pressure: Evidence from Behavior, Evoked Potentials, and Quantitative Model Comparison. <i>Journal of Neuroscience</i> , 2015 , 35, 10989-1011	6.6	23
112	Connectionist perspectives on language learning, representation and processing. <i>Wiley Interdisciplinary Reviews: Cognitive Science</i> , 2015 , 6, 235-47	4.5	20
111	Cognitive Neuroscience 2015 , 95-102		2
110	Interactive activation and mutual constraint satisfaction in perception and cognition. <i>Cognitive Science</i> , 2014 , 38, 1139-89	2.2	51
109	Connectionism and the Emergence of Mind 2014 ,		1
108	Parallel Distributed Processing at 25: further explorations in the microstructure of cognition. <i>Cognitive Science</i> , 2014 , 38, 1024-77	2.2	59
107	Why bilateral damage is worse than unilateral damage to the brain. <i>Journal of Cognitive Neuroscience</i> , 2013 , 25, 2107-23	3.1	68
106	Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. <i>Journal of Experimental Psychology: General</i> , 2013 , 142, 1190-	1 2 170	148
105	A differentiation account of recognition memory: evidence from fMRI. <i>Journal of Cognitive Neuroscience</i> , 2013 , 25, 421-35	3.1	20
104	Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review. <i>Frontiers in Psychology</i> , 2013 , 4, 503	3.4	32
103	Context, cortex, and associations: a connectionist developmental approach to verbal analogies. <i>Frontiers in Psychology</i> , 2013 , 4, 857	3.4	8
102	Two mechanisms of human contingency learning. <i>Psychological Science</i> , 2012 , 23, 59-68	7.9	21

101	Retrospective. R. Duncan Luce (1925-2012). <i>Science</i> , 2012 , 337, 1619	33.3	
100	Using Time-Varying Evidence to Test Models of Decision Dynamics: Bounded Diffusion vs. the Leaky Competing Accumulator Model. <i>Frontiers in Neuroscience</i> , 2012 , 6, 79	5.1	67
99	Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system. <i>Psychological Review</i> , 2012 , 119, 573-616	6.3	190
98	Can native Japanese listeners learn to differentiate/r-l/on the basis of F3 onset frequency?. <i>Bilingualism</i> , 2012 , 15, 434-435	3.2	14
97	Can native Japanese listeners learn to differentiate /r[/] on the basis of F3 onset frequency?*. <i>Bilingualism</i> , 2012 , 15, 255-274	3.2	31
96	Testing multi-alternative decision models with non-stationary evidence. <i>Frontiers in Neuroscience</i> , 2011 , 5, 63	5.1	43
95	Dynamic integration of reward and stimulus information in perceptual decision-making. <i>PLoS ONE</i> , 2011 , 6, e16749	3.7	42
94	Predicting Native English-Like Performance by Native Japanese Speakers. <i>Journal of Phonetics</i> , 2011 , 39, 571-584	2.2	40
93	A PDP model of the simultaneous perception of multiple objects. <i>Connection Science</i> , 2011 , 23, 161-177	2 2.8	8
92	Locating object knowledge in the brain: comment on Bowers's (2009) attempt to revive the grandmother cell hypothesis. <i>Psychological Review</i> , 2010 , 117, 284-8	6.3	47
91	Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. <i>PLoS ONE</i> , 2010 , 5, e9308	3.7	143
90	Letting structure emerge: connectionist and dynamical systems approaches to cognition. <i>Trends in Cognitive Sciences</i> , 2010 , 14, 348-56	14	324
89	Emergence in cognitive science. <i>Topics in Cognitive Science</i> , 2010 , 2, 751-70	2.5	48
88	Postscript: Parallel distributed processing in localist models without thresholds <i>Psychological Review</i> , 2010 , 117, 289-290	6.3	1
87	Are there mental lexicons? The role of semantics in lexical decision. <i>Brain Research</i> , 2010 , 1365, 66-81	3.7	37
86	Memory as a Constructive Process 2010 , 129-149		4
85	How do we get from propositions to behavior?. Behavioral and Brain Sciences, 2009, 32, 226-227	0.9	
84	Modeling Unsupervised Perceptual Category Learning. <i>IEEE Transactions on Autonomous Mental Development</i> , 2009 , 1, 35-43		8

(2004-2009)

83	A connectionist model of a continuous developmental transition in the balance scale task. <i>Cognition</i> , 2009 , 110, 395-411	3.5	16
82	Is a Machine Realization of Truly Human-Like Intelligence Achievable?. <i>Cognitive Computation</i> , 2009 , 1, 17-21	4.4	16
81	The place of modeling in cognitive science. <i>Topics in Cognitive Science</i> , 2009 , 1, 11-38	2.5	136
80	A single-system account of semantic and lexical deficits in five semantic dementia patients. <i>Cognitive Neuropsychology</i> , 2008 , 25, 136-64	2.3	68
79	A simple model from a powerful framework that spans levels of analysis. <i>Behavioral and Brain Sciences</i> , 2008 , 31, 729-749	0.9	7
78	PrEis of Semantic Cognition: A Parallel Distributed Processing Approach. <i>Behavioral and Brain Sciences</i> , 2008 , 31, 689-714	0.9	85
77	Effects of Attention on the Strength of Lexical Influences on Speech Perception: Behavioral Experiments and Computational Mechanisms. <i>Cognitive Science</i> , 2008 , 32, 398-417	2.2	39
76	Using domain-general principles to explain children's causal reasoning abilities. <i>Developmental Science</i> , 2007 , 10, 333-56	4.5	76
75	Success and failure of new speech category learning in adulthood: consequences of learned Hebbian attractors in topographic maps. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2007 , 7, 53-73	3 ^{3.5}	35
74	Gradience of Gradience: A reply to Jackendoff. <i>Linguistic Review</i> , 2007 , 24,	0.5	23
73	Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2007 , 362, 1655-70	5.8	125
72	Unsupervised learning of vowel categories from infant-directed speech. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13273-8	11.5	130
71	Differentiating the differentiation models: A comparison of the retrieving effectively from memory model (REM) and the subjective likelihood model (SLiM). <i>Journal of Memory and Language</i> , 2006 , 55, 447-460	3.8	36
70	Are there interactive processes in speech perception?. <i>Trends in Cognitive Sciences</i> , 2006 , 10, 363-9	14	168
69	An interactive Hebbian account of lexically guided tuning of speech perception. <i>Psychonomic Bulletin and Review</i> , 2006 , 13, 958-65	4.1	56
68	Computational and behavioral investigations of lexically induced delays in phoneme recognition. <i>Journal of Memory and Language</i> , 2005 , 52, 416-435	3.8	16
67	Alternatives to the combinatorial paradigm of linguistic theory based on domain general principles of human cognition. <i>Linguistic Review</i> , 2005 , 22,	0.5	94
66	Categorization and discrimination of nonspeech sounds: differences between steady-state and	2.2	48

65	A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the lowa gambling task. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 16075-80	11.5	339
64	U-Shaped Curves in Development: A PDP Approach. <i>Journal of Cognition and Development</i> , 2004 , 5, 137	-1245	26
63	Loss aversion and inhibition in dynamical models of multialternative choice. <i>Psychological Review</i> , 2004 , 111, 757-69	6.3	245
62	Structure and deterioration of semantic memory: a neuropsychological and computational investigation. <i>Psychological Review</i> , 2004 , 111, 205-35	6.3	741
61	Semantic Cognition 2004 ,		347
60	Developing a domain-general framework for cognition: What is the best approach?. <i>Behavioral and Brain Sciences</i> , 2003 , 26, 611-614	0.9	8
59	Deficits in phonology and past-tense morphology: What the connection?. <i>Journal of Memory and Language</i> , 2003 , 48, 502-526	3.8	108
58	The parallel distributed processing approach to semantic cognition. <i>Nature Reviews Neuroscience</i> , 2003 , 4, 310-22	13.5	418
57	Connectionist models of development. <i>Developmental Science</i> , 2003 , 6, 413-429	4.5	121
56	Differentiation and integration in human language. Reply to Marslen-Wilson and Tyler. <i>Trends in Cognitive Sciences</i> , 2003 , 7, 63-64	14	13
55	Double dissociations never license simple inferences about underlying brain organization, especially in developmental cases. <i>Behavioral and Brain Sciences</i> , 2002 , 25, 763-764	0.9	
54	Success and failure in teaching the [r]-[l] contrast to Japanese adults: tests of a Hebbian model of plasticity and stabilization in spoken language perception. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2002 , 2, 89-108	3.5	171
53	Rules or connections in past-tense inflections: what does the evidence rule out?. <i>Trends in Cognitive Sciences</i> , 2002 , 6, 465-472	14	300
52	'Words or Rules' cannot exploit the regularity in exceptions. <i>Trends in Cognitive Sciences</i> , 2002 , 6, 464-46	6 5 4	83
51	The Morton-Massaro law of information integration: implications for models of perception. <i>Psychological Review</i> , 2001 , 108, 113-48	6.3	94
50	The time course of perceptual choice: the leaky, competing accumulator model. <i>Psychological Review</i> , 2001 , 108, 550-92	6.3	1561
49	Artificial intelligence. Autonomous mental development by robots and animals. <i>Science</i> , 2001 , 291, 599	-690;	434
48	Connectionist Models of Cognition 2001 , 23-58		34

(1991-2000)

47	The basis of hyperspecificity in autism: a preliminary suggestion based on properties of neural nets. <i>Journal of Autism and Developmental Disorders</i> , 2000 , 30, 497-502	4.6	48
46	Stipulating versus discovering representations. <i>Behavioral and Brain Sciences</i> , 2000 , 23, 489-491	0.9	13
45	Neural models of memory. <i>Current Opinion in Neurobiology</i> , 1999 , 9, 184-8	7.6	93
44	Understanding failures of learning: Hebbian learning, competition for representational space, and some preliminary experimental data. <i>Progress in Brain Research</i> , 1999 , 121, 75-80	2.9	34
43	Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory. <i>Psychological Review</i> , 1998 , 105, 724-60	6.3	264
42	A PDP approach to set size effects within the Stroop task: Reply to Kanne, Balota, Spieler, and Faust (1998) <i>Psychological Review</i> , 1998 , 105, 188-194	6.3	23
41	Rethinking infant knowledge: toward an adaptive process account of successes and failures in object permanence tasks. <i>Psychological Review</i> , 1997 , 104, 686-713	6.3	479
40	Understanding normal and impaired word reading: computational principles in quasi-regular domains. <i>Psychological Review</i> , 1996 , 103, 56-115	6.3	2164
39	Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. <i>Hippocampus</i> , 1996 , 6, 654-65	3.5	178
38	Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. <i>Psychological Review</i> , 1995 , 102, 419-457	6.3	3699
37	Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. <i>Hippocampus</i> , 1994 , 4, 661	- 8 2 5	685
36	Category learning. Learning the general but not the specific. <i>Current Biology</i> , 1994 , 4, 357-8	6.3	2
35	Learning Continuous Probability Distributions with Symmetric Diffusion Networks. <i>Cognitive Science</i> , 1993 , 17, 463-496	2.2	23
34	A Parallel Distributed Processing Approach to Automaticity. <i>American Journal of Psychology</i> , 1992 , 105, 239	0.5	202
33	Neural Network Models and Cognitive Neuropsychology. <i>Psychiatric Annals</i> , 1992 , 22, 148-153	0.5	5
32	Learning the structure of event sequences Journal of Experimental Psychology: General, 1991, 120, 235	5-2 <i>5</i> ₅ 3	640
31	A computational model of semantic memory impairment: Modality specificity and emergent category specificity <i>Journal of Experimental Psychology: General</i> , 1991 , 120, 339-357	4.7	634
30	Stochastic interactive processes and the effect of context on perception. <i>Cognitive Psychology</i> , 1991 , 23, 1-44	3.1	108

29	Graded state machines: The representation of temporal contingencies in simple recurrent networks. <i>Machine Learning</i> , 1991 , 7, 161-193	4	126
28	Graded State Machines: The Representation of Temporal Contingencies in Simple Recurrent Networks. <i>Machine Learning</i> , 1991 , 7, 161-193	4	25
27	On the control of automatic processes: a parallel distributed processing account of the Stroop effect. <i>Psychological Review</i> , 1990 , 97, 332-61	6.3	1614
26	Learning and applying contextual constraints in sentence comprehension. <i>Artificial Intelligence</i> , 1990 , 46, 217-257	3.6	262
25	Finite State Automata and Simple Recurrent Networks. Neural Computation, 1989, 1, 372-381	2.9	322
24	A distributed, developmental model of word recognition and naming. <i>Psychological Review</i> , 1989 , 96, 523-68	6.3	2962
23	Constituent attachment and thematic role assignment in sentence processing: Influences of content-based expectations. <i>Journal of Memory and Language</i> , 1988 , 27, 597-632	3.8	262
22	Cognitive penetration of the mechanisms of perception: Compensation for coarticulation of lexically restored phonemes. <i>Journal of Memory and Language</i> , 1988 , 27, 143-165	3.8	244
21	An Interactive Activation Model of Context Effects in Letter Perception: Part I. An Account of Basic Findings 1988 , 580-596		7
20	Learning and Applying Contextual Constraints in Sentence Comprehension 1988,		8
19	The Case for Interactionism in Language Processing 1987,		22
19 18	The Case for Interactionism in Language Processing 1987, Perceptual interactions in two-word displays: Familiarity and similarity effects Journal of Experimental Psychology: Human Perception and Performance, 1986, 12, 18-35	2.6	71
	Perceptual interactions in two-word displays: Familiarity and similarity effects <i>Journal of</i>	2.6	
18	Perceptual interactions in two-word displays: Familiarity and similarity effects <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 1986 , 12, 18-35		71
18	Perceptual interactions in two-word displays: Familiarity and similarity effects <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 1986 , 12, 18-35 The TRACE model of speech perception. <i>Cognitive Psychology</i> , 1986 , 18, 1-86	3.1	2063
18 17 16	Perceptual interactions in two-word displays: Familiarity and similarity effects <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 1986 , 12, 18-35 The TRACE model of speech perception. <i>Cognitive Psychology</i> , 1986 , 18, 1-86 Parallel Distributed Processing 1986 ,	3.1	71 2063 10987
18 17 16	Perceptual interactions in two-word displays: Familiarity and similarity effects <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 1986 , 12, 18-35 The TRACE model of speech perception. <i>Cognitive Psychology</i> , 1986 , 18, 1-86 Parallel Distributed Processing 1986 , Levels indeed! A response to Broadbent <i>Journal of Experimental Psychology: General</i> , 1985 , 114, 193-1 Putting Knowledge in its Place: A Scheme for Programming Parallel Processing Structures on the	3.1 1 94 .7	71 2063 10987 138

LIST OF PUBLICATIONS

11	An interactive activation model of context effects in letter perception: II. The contextual enhancement effect and some tests and extensions of the model <i>Psychological Review</i> , 1982 , 89, 60-94 ^{6.3}	1035
10	An interactive activation model of context effects in letter perception: I. An account of basic findings <i>Psychological Review</i> , 1981 , 88, 375-407	3769
9	Experimental tests of a hierarchical model of word identification. <i>Journal of Verbal Learning and Verbal Behavior</i> , 1980 , 19, 503-524	126
8	Structural factors in figure perception. <i>Perception & Psychophysics</i> , 1979 , 26, 221-229	29
7	On the time relations of mental processes: An examination of systems of processes in cascade <i>Psychological Review</i> , 1979 , 86, 287-330	1203
6	Perception and masking of wholes and parts <i>Journal of Experimental Psychology: Human</i> Perception and Performance, 1978 , 4, 210-223	58
5	Studying Individual Differences in Reading 1978 , 191-202	
4	The role of familiar units in perception of words and nonwords. <i>Perception & Psychophysics</i> , 1977 , 22, 249-261	149
3	Preliminary letter identification in the perception of words and nonwords <i>Journal of Experimental Psychology: Human Perception and Performance</i> , 1976 , 2, 80-91	190
2	Visual factors in word perception. <i>Perception & Psychophysics</i> , 1973 , 14, 365-370	128
1	Semantics without categorization88-119	4