Christian Tutivén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/632768/publications.pdf Version: 2024-02-01

<u>CHRISTIAN ΤΗΤΙΛΑΩΝ</u>

#	Article	IF	CITATIONS
1	Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms. Mathematics, 2022, 10, 1131.	2.2	4
2	Development of a Wind Turbine Digital-Twin for failure prognosis: First Results. , 2022, , .		1
3	Detection of Jacket Offshore Wind Turbine Structural Damage using an 1D-Convolutional Neural Network with a Support Vector Machine Layer. Journal of Physics: Conference Series, 2022, 2265, 032088.	0.4	1
4	SCADA Data-Driven Wind Turbine Main Bearing Fault Prognosis Based on Principal Component Analysis. Journal of Physics: Conference Series, 2022, 2265, 032107.	0.4	2
5	Wind Turbine Main Bearing Failure Prediction using a Hybrid Neural Network. Journal of Physics: Conference Series, 2022, 2265, 032090.	0.4	1
6	Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM. Energies, 2022, 15, 4381.	3.1	9
7	Early Fault Detection in the Main Bearing of Wind Turbines Based on Gated Recurrent Unit (GRU) Neural Networks and SCADA Data. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5583-5593.	5.8	24
8	Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data. Sensors, 2021, 21, 2228.	3.8	43
9	Unsupervised Damage Detection for Offshore Jacket Wind Turbine Foundations Based on an Autoencoder Neural Network. Sensors, 2021, 21, 3333.	3.8	18
10	Wind Turbine Main Bearing Condition Monitoring via Convolutional Autoencoder Neural Networks. , 2021, , .		2
11	Vibration-Response-Only Structural Health Monitoring for Offshore Wind Turbine Jacket Foundations via Convolutional Neural Networks. Sensors, 2020, 20, 3429.	3.8	39
12	Damage Detection and Diagnosis for Offshore Wind Foundations. , 2020, , .		1
13	Wind turbine fault detection and classification by means of image texture analysis. Mechanical Systems and Signal Processing, 2018, 107, 149-167.	8.0	81
14	Fault detection and isolation of pitch actuator faults in a floating wind turbine. IFAC-PapersOnLine, 2018, 51, 480-487.	0.9	2
15	Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data. Energies, 2018, 11, 3018.	3.1	43
16	Acceleration-based fault-tolerant control design of offshore fixed wind turbines. Structural Control and Health Monitoring, 2017, 24, e1920.	4.0	4
17	Hysteresisâ€Based Design of Dynamic Reference Trajectories to Avoid Saturation in Controlled Wind Turbines. Asian Journal of Control, 2017, 19, 438-449.	3.0	14
18	Passive fault tolerant control strategy in controlled wind turbines. , 2016, , .		1

2

Christian Tutivén

#	Article	IF	CITATIONS
19	Wind turbines controllers design based on the super-twisting algorithm. , 2016, , .		1
20	Fault Diagnosis and Fault-Tolerant Control of Wind Turbines via a Discrete Time Controller with a Disturbance Compensator. Energies, 2015, 8, 4300-4316.	3.1	42
21	Active fault tolerant control for pitch actuators failures tested in a hardware-in-the-loop simulation for wind turbine controllers. , 2015, , .		2
22	Hardware in the Loop Wind Turbine Simulator for Control System Testing. Advances in Industrial Control, 2014, , 449-466.	0.5	3
23	Convolutional Neural Network for Wind Turbine Failure Classification Based on SCADA Data. Renewable Energy and Power Quality Journal, 0, 19, 447-451.	0.2	0
24	Wind Turbine Multi-Fault Detection based on SCADA Data via an AutoEncoder. Renewable Energy and Power Quality Journal, 0, 19, 487-492.	0.2	1
25	SCADA Data-Driven Wind Turbine Main Bearing Fault Prognosis Based on One-Class Support Vector Machines. Renewable Energy and Power Quality Journal, 0, 19, 338-343.	0.2	4
26	A Fault Detection method for pitch actuators faults in Wind Turbines. Renewable Energy and Power Quality Journal, 0, , 698-703.	0.2	3
27	Super-twisting controllers for wind turbines. Renewable Energy and Power Quality Journal, 0, , 684-689.	0.2	0
28	Variable structure strategy to avoid torque control saturation of a wind turbine in the presence of faults. Renewable Energy and Power Quality Journal, 0, , 222-228.	0.2	0