
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6327669/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dose response to methylating agents in the Î <sup>3</sup> H2AX, SCE and colony formation assays: Effect of MGMT and MPG overexpression. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 876-877, 503462. | 0.9 | 0         |
| 2  | Senescence Is the Main Trait Induced by Temozolomide in Glioblastoma Cells. Cancers, 2022, 14, 2233.                                                                                                                                 | 1.7 | 19        |
| 3  | Curcumin Administered as Micellar Solution Suppresses Intestinal Inflammation and Colorectal Carcinogenesis. Nutrition and Cancer, 2021, 73, 686-693.                                                                                | 0.9 | 11        |
| 4  | Do Carcinogens Have a Threshold Dose? The Pros and Cons. , 2021, , 1-19.                                                                                                                                                             |     | 0         |
| 5  | Impaired DNA repair in mouse monocytes compared to macrophages and precursors. DNA Repair, 2021, 98, 103037.                                                                                                                         | 1.3 | 7         |
| 6  | Targeting c-IAP1, c-IAP2, and Bcl-2 Eliminates Senescent Glioblastoma Cells Following Temozolomide<br>Treatment. Cancers, 2021, 13, 3585.                                                                                            | 1.7 | 19        |
| 7  | Cytotoxic, Genotoxic and Senolytic Potential of Native and Micellar Curcumin. Nutrients, 2021, 13, 2385.                                                                                                                             | 1.7 | 14        |
| 8  | Molecular Dosimetry of Temozolomide: Quantification of Critical Lesions, Correlation to Cell Death<br>Responses, and Threshold Doses. Molecular Cancer Therapeutics, 2021, 20, 1789-1799.                                            | 1.9 | 14        |
| 9  | Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment?.<br>International Journal of Molecular Sciences, 2021, 22, 10672.                                                                         | 1.8 | 5         |
| 10 | Do Carcinogens Have a Threshold Dose? The Pros and Cons. , 2021, , 555-573.                                                                                                                                                          |     | 0         |
| 11 | Comparison of DNA repair and radiosensitivity of different blood cell populations. Scientific Reports, 2021, 11, 2478.                                                                                                               | 1.6 | 67        |
| 12 | Methadone-mediated sensitization of glioblastoma cells is drug and cell line dependent. Journal of<br>Cancer Research and Clinical Oncology, 2021, 147, 779-792.                                                                     | 1.2 | 5         |
| 13 | Accumulation of Temozolomide-Induced Apoptosis, Senescence and DNA Damage by Metronomic Dose<br>Schedule: A Proof-of-Principle Study with Glioblastoma Cells. Cancers, 2021, 13, 6287.                                               | 1.7 | 8         |
| 14 | Cytotoxic and Senolytic Effects of Methadone in Combination with Temozolomide in Glioblastoma<br>Cells. International Journal of Molecular Sciences, 2020, 21, 7006.                                                                 | 1.8 | 9         |
| 15 | A genome-wide screening for DNA repair genes: much more players than hitherto known. Signal<br>Transduction and Targeted Therapy, 2020, 5, 204.                                                                                      | 7.1 | 3         |
| 16 | Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in<br>DNA damage-induced cellular senescence. Nucleic Acids Research, 2020, 48, 12085-12101.                                           | 6.5 | 23        |
| 17 | Human primary endothelial cells are impaired in nucleotide excision repair and sensitive to benzo[a]pyrene compared with smooth muscle cells and pericytes. Scientific Reports, 2019, 9, 13800.                                      | 1.6 | 12        |
| 18 | DNA repair in personalized brain cancer therapy with temozolomide and nitrosoureas. DNA Repair,<br>2019, 78, 128-141.                                                                                                                | 1.3 | 89        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Are There Thresholds in Glioblastoma Cell Death Responses Triggered by Temozolomide?. International<br>Journal of Molecular Sciences, 2019, 20, 1562.                                                                                      | 1.8  | 41        |
| 20 | The SIAH1–HIPK2–p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced<br>Glioblastoma Cell Death. Molecular Cancer Research, 2019, 17, 1129-1141.                                                                           | 1.5  | 40        |
| 21 | Temozolomide in Glioblastoma Therapy: Role of Apoptosis, Senescence and Autophagy. Comment on<br>Strobel et al., Temozolomide and Other Alkylating Agents in Glioblastoma Therapy. Biomedicines 2019,<br>7, 69. Biomedicines, 2019, 7, 90. | 1.4  | 30        |
| 22 | Immunological and mass spectrometry-based approaches to determine thresholds of the mutagenic DNA adduct O6-methylguanine in vivo. Archives of Toxicology, 2019, 93, 559-572.                                                              | 1.9  | 17        |
| 23 | Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via<br>Activation of ATR–CHK1, p21, and NF-κB. Cancer Research, 2019, 79, 99-113.                                                              | 0.4  | 126       |
| 24 | Werner syndrome (WRN) DNA helicase and base excision repair (BER) factors maintain endothelial<br>homeostasis. DNA Repair, 2019, 73, 17-27.                                                                                                | 1.3  | 7         |
| 25 | Compromised DNA Repair and Signalling in Human Granulocytes. Journal of Innate Immunity, 2019, 11, 74-85.                                                                                                                                  | 1.8  | 12        |
| 26 | Epigenetic regulation of DNA repair genes and implications for tumor therapy. Mutation Research -<br>Reviews in Mutation Research, 2019, 780, 15-28.                                                                                       | 2.4  | 59        |
| 27 | PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4061-E4070.                | 3.3  | 66        |
| 28 | Repair gene O <sup>6</sup> â€methylguanineâ€DNA methyltransferase is controlled by SP1 and upâ€regulated<br>by glucocorticoids, but not by temozolomide and radiation. Journal of Neurochemistry, 2018, 144,<br>139-151.                   | 2.1  | 41        |
| 29 | Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in the differential radiation response. Cell Death and Disease, 2018, 9, 1053.                  | 2.7  | 40        |
| 30 | Genotoxicity testing: Comparison of the γH2AX focus assay with the alkaline and neutral comet assays.<br>Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 822, 10-18.                                           | 0.9  | 29        |
| 31 | Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens. Food and Chemical Toxicology, 2017, 106, 583-594.                                                                                 | 1.8  | 28        |
| 32 | Death of Monocytes through Oxidative Burst of Macrophages and Neutrophils: Killing in Trans. PLoS<br>ONE, 2017, 12, e0170347.                                                                                                              | 1.1  | 42        |
| 33 | Integrin $\hat{1}\pm V\hat{1}^23$ silencing sensitizes malignant glioma cells to temozolomide by suppression of homologous recombination repair. Oncotarget, 2017, 8, 27754-27771.                                                         | 0.8  | 28        |
| 34 | MGMT promoter methylation determined by HRM in comparison to MSP and pyrosequencing for predicting high-grade glioma response. Clinical Epigenetics, 2016, 8, 49.                                                                          | 1.8  | 59        |
| 35 | Adaptive upregulation of DNA repair genes following benzo(a)pyrene diol epoxide protects against cell death at the expense of mutations. Nucleic Acids Research, 2016, 44, 10727-10743.                                                    | 6.5  | 37        |
| 36 | DNA damage and the balance between survival and death in cancer biology. Nature Reviews Cancer, 2016, 16, 20-33.                                                                                                                           | 12.8 | 870       |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Apoptosis induced by temozolomide and nimustine in glioblastoma cells is supported by<br>JNK/c-Jun-mediated induction of the BH3-only protein BIM. Oncotarget, 2015, 6, 33755-33768.                                                              | 0.8 | 42        |
| 38 | Theoretical considerations for thresholds in chemical carcinogenesis. Mutation Research - Reviews in Mutation Research, 2015, 765, 56-67.                                                                                                         | 2.4 | 31        |
| 39 | DNA repair by MGMT, but not AAG, causes a threshold in alkylation-induced colorectal carcinogenesis.<br>Carcinogenesis, 2015, 36, 1235-1244.                                                                                                      | 1.3 | 42        |
| 40 | The eucalyptus oil ingredient 1,8-cineol induces oxidative DNA damage. Archives of Toxicology, 2015, 89, 797-805.                                                                                                                                 | 1.9 | 42        |
| 41 | DNA breaks and chromosomal aberrations arise when replication meets base excision repair. Journal of Cell Biology, 2014, 206, 29-43.                                                                                                              | 2.3 | 115       |
| 42 | The γH2AX Assay for Genotoxic and Nongenotoxic Agents: Comparison of H2AX Phosphorylation with<br>Cell Death Response. Toxicological Sciences, 2014, 140, 103-117.                                                                                | 1.4 | 106       |
| 43 | Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the<br>Methylating Anticancer Drug Temozolomide. Molecular Cancer Therapeutics, 2013, 12, 2529-2540.                                                | 1.9 | 85        |
| 44 | DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis.<br>Cancer Letters, 2013, 332, 237-248.                                                                                                         | 3.2 | 720       |
| 45 | O6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. Carcinogenesis, 2013, 34, 2435-2442.                                                                                                     | 1.3 | 84        |
| 46 | Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger<br>mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Research, 2013, 41, 8403-8420.                                                | 6.5 | 201       |
| 47 | Survival and Death Strategies in Glioma Cells: Autophagy, Senescence and Apoptosis Triggered by a<br>Single Type of Temozolomide-Induced DNA Damage. PLoS ONE, 2013, 8, e55665.                                                                   | 1.1 | 218       |
| 48 | Human CD4+CD25+ Regulatory T Cells Are Sensitive to Low Dose Cyclophosphamide: Implications for the Immune Response. PLoS ONE, 2013, 8, e83384.                                                                                                   | 1.1 | 80        |
| 49 | Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR<br>Pathway While Dendritic Cells and Macrophages Are Resistant. PLoS ONE, 2012, 7, e39956.                                                              | 1.1 | 53        |
| 50 | Temozolomide Dosing Regimens for Glioma Patients. Current Neurology and Neuroscience Reports, 2012, 12, 286-293.                                                                                                                                  | 2.0 | 34        |
| 51 | Artesunate Induces Oxidative DNA Damage, Sustained DNA Double-Strand Breaks, and the ATM/ATR<br>Damage Response in Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 2224-2233.                                                              | 1.9 | 142       |
| 52 | Intrinsic Anticancer Drug Resistance of Malignant Melanoma Cells Is Abrogated by IFN-β and Valproic<br>Acid. Cancer Research, 2011, 71, 4150-4160.                                                                                                | 0.4 | 31        |
| 53 | Human monocytes are severely impaired in base and DNA double-strand break repair that renders them<br>vulnerable to oxidative stress. Proceedings of the National Academy of Sciences of the United States<br>of America, 2011, 108, 21105-21110. | 3.3 | 153       |
| 54 | Targeting O 6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cellular and Molecular Life Sciences, 2010, 67, 3663-3681.                                                                            | 2.4 | 124       |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | MGMT activity, promoter methylation and immunohistochemistry of pretreatment and recurrent malignant gliomas: a comparative study on astrocytoma and glioblastoma. International Journal of Cancer, 2010, 127, 2106-2118.                                                                    | 2.3 | 97        |
| 56 | Both base excision repair and O6-methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis. Carcinogenesis, 2010, 31, 2111-2117.                                                                                                                          | 1.3 | 61        |
| 57 | Processing of O <sup>6</sup> -methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle, 2010, 9, 168-178.                                                                                      | 1.3 | 128       |
| 58 | Topotecan Triggers Apoptosis in p53-Deficient Cells by Forcing Degradation of XIAP and Survivin<br>Thereby Activating Caspase-3-Mediated Bid Cleavage. Journal of Pharmacology and Experimental<br>Therapeutics, 2010, 332, 316-325.                                                         | 1.3 | 33        |
| 59 | Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against<br>ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Research, 2010, 38, 6418-6432.                                                                                    | 6.5 | 52        |
| 60 | MGMT in primary and recurrent human glioblastomas after radiation and chemotherapy and comparison with p53 status and clinical outcome. International Journal of Cancer, 2008, 122, 1391-1399.                                                                                               | 2.3 | 96        |
| 61 | Human Monocytes, but not Dendritic Cells Derived from Them, Are Defective in Base Excision Repair<br>and Hypersensitive to Methylating Agents. Cancer Research, 2007, 67, 26-31.                                                                                                             | 0.4 | 52        |
| 62 | MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair, 2007, 6, 1079-1099.                                                                                                                                               | 1.3 | 549       |
| 63 | Local intracerebral administration of O6-benzylguanine combined with systemic chemotherapy with temozolomide of a patient suffering from a recurrent glioblastoma. Journal of Neuro-Oncology, 2007, 82, 85-89.                                                                               | 1.4 | 39        |
| 64 | O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human<br>malignant glioma cells. Journal of Neurochemistry, 2006, 96, 766-776.                                                                                                                     | 2.1 | 290       |
| 65 | Topotecan-Triggered Degradation of Topoisomerase I Is p53-Dependent and Impacts Cell Survival.<br>Cancer Research, 2005, 65, 8920-8926.                                                                                                                                                      | 0.4 | 44        |
| 66 | Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1. Oncogene, 2004, 23, 359-367.                                                                                                                     | 2.6 | 114       |
| 67 | Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis, 2003, 24, 625-635.                                                                                                                                                                                       | 1.3 | 168       |
| 68 | Long-time expression of DNA repair enzymes MGMT and APE in human peripheral blood mononuclear cells. Archives of Toxicology, 2001, 75, 306-312.                                                                                                                                              | 1.9 | 33        |
| 69 | BER, MGMT, and MMR in defense against alkylation-induced genotoxicity and apoptosis. Progress in<br>Molecular Biology and Translational Science, 2001, 68, 41-54.                                                                                                                            | 1.9 | 82        |
| 70 | DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis, 2001, 22, 579-585.                                                                                                                                                                                  | 1.3 | 99        |
| 71 | Comparison of the genotoxic and apoptosis-inducing properties of ganciclovir and penciclovir in<br>Chinese hamster ovary cells transfected with the thymidine kinase gene of herpes simplex virus-1:<br>Implications for gene therapeutic approaches. Cancer Gene Therapy, 2000, 7, 107-117. | 2.2 | 53        |
| 72 | Nuclear Translocation of Mismatch Repair Proteins MSH2 and MSH6 as a Response of Cells to Alkylating Agents. Journal of Biological Chemistry, 2000, 275, 36256-36262.                                                                                                                        | 1.6 | 85        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mexâ°',<br>Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models. Mutation<br>Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 381, 227-241.  | 0.4 | 169       |
| 74 | Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid<br>dexamethasone and comparison with the response of base excision repair genes. Carcinogenesis, 1996,<br>17, 2329-2336.                                                                         | 1.3 | 113       |
| 75 | Contribution of O6-alkylguanine and N-alkylpurines to the formation of sister chromatid exchanges, chromosomal aberrations, and gene mutations: New insights gained from studies of genetically engineered mammalian cell lines. Environmental and Molecular Mutagenesis, 1993, 22, 283-292. | 0.9 | 115       |
| 76 | Dependency of the yield of sister-chromatid exchanges induced by alkylating agents on fixation time.<br>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1985, 149, 451-461.                                                                                         | 0.4 | 32        |
| 77 | Temozolomide â $\in$ " Just a Radiosensitizer?. Frontiers in Oncology, 0, 12, .                                                                                                                                                                                                              | 1.3 | 7         |