Simon A Levin

List of Publications by Citations

Source: https://exaly.com/author-pdf/6327424/simon-a-levin-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51,660 106 487 220 h-index g-index citations papers 59,747 541 7.9 7.93 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
487	The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. <i>Ecology</i> , 1992 , 73, 1943-1967	4.6	4212
486	Effective leadership and decision-making in animal groups on the move. <i>Nature</i> , 2005 , 433, 513-6	50.4	1748
485	Global trends in antimicrobial use in food animals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5649-54	11.5	1574
484	Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. <i>Lancet Infectious Diseases, The</i> , 2014 , 14, 742-750	25.5	1285
483	Anticipating critical transitions. <i>Science</i> , 2012 , 338, 344-8	33.3	1207
482	Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3463-E3470	0 ^{11.5}	1111
481	Economic growth, carrying capacity, and the environment. <i>Science</i> , 1995 , 268, 520-1	33.3	1077
480	Intertidal Landscapes: Disturbance and the Dynamics of Pattern. <i>Ecological Monographs</i> , 1981 , 51, 145-	13/8	888
479	Towards a general theory of adaptive walks on rugged landscapes. <i>Journal of Theoretical Biology</i> , 1987 , 128, 11-45	2.3	886
478	Ecosystems and the Biosphere as Complex Adaptive Systems. <i>Ecosystems</i> , 1998 , 1, 431-436	3.9	884
477	Dispersion and Population Interactions. <i>American Naturalist</i> , 1974 , 108, 207-228	3.7	827
476	The global extent and determinants of savanna and forest as alternative biome states. <i>Science</i> , 2011 , 334, 230-2	33.3	814
475	The Importance of Being Discrete (and Spatial). <i>Theoretical Population Biology</i> , 1994 , 46, 363-394	1.2	760
474	Marine taxa track local climate velocities. <i>Science</i> , 2013 , 341, 1239-42	33.3	732
473	Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. <i>Nature</i> , 2004 , 429, 171-4	50.4	648
472	Ecology. The value of nature and the nature of value. <i>Science</i> , 2000 , 289, 395-6	33.3	614
471	Disturbance, patch formation, and community structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1974 , 71, 2744-7	11.5	597

(1994-2012)

470	Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5609-14	11.5	553
469	The Ecology and Evolution of Seed Dispersal: A Theoretical Perspective. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2003 , 34, 575-604	13.5	552
468	Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. <i>Journal of Mathematical Biology</i> , 1986 , 23, 187-204	2	520
467	Diffusion and Ecological Problems: Modern Perspectives. <i>Interdisciplinary Applied Mathematics</i> , 2001 ,	0.7	510
466	Dynamical behavior of epidemiological models with nonlinear incidence rates. <i>Journal of Mathematical Biology</i> , 1987 , 25, 359-80	2	509
465	Mechanisms of long-distance dispersal of seeds by wind. <i>Nature</i> , 2002 , 418, 409-13	50.4	476
464	Comparing classical community models: theoretical consequences for patterns of diversity. <i>American Naturalist</i> , 2002 , 159, 1-23	3.7	475
463	Are We Consuming Too Much?. Journal of Economic Perspectives, 2004, 18, 147-172	9.9	463
462	The Sustainable Biosphere Initiative: An Ecological Research Agenda: A Report from the Ecological Society of America. <i>Ecology</i> , 1991 , 72, 371-412	4.6	459
461	Community Equilibria and Stability, and an Extension of the Competitive Exclusion Principle. <i>American Naturalist</i> , 1970 , 104, 413-423	3.7	436
460	Selection of Intermediate Rates of Increase in Parasite-Host Systems. <i>American Naturalist</i> , 1981 , 117, 308-315	3.7	424
459	Spread of invading organisms. <i>Landscape Ecology</i> , 1990 , 4, 177-188	4.3	385
458	Social-ecological systems as complex adaptive systems: modeling and policy implications. <i>Environment and Development Economics</i> , 2013 , 18, 111-132	1.8	381
457	Economic growth, carrying capacity, and the environment. <i>Ecological Economics</i> , 1995 , 15, 91-95	5.6	370
456	Dispersal strategies in patchy environments. <i>Theoretical Population Biology</i> , 1984 , 26, 165-191	1.2	367
455	Does aquaculture add resilience to the global food system?. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 13257-63	11.5	340
454	Resilience, Robustness, and Marine Ecosystem-based Management. <i>BioScience</i> , 2008 , 58, 27-32	5.7	340
453	Stochastic Spatial Models: A User's Guide to Ecological Applications. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1994 , 343, 329-350	5.8	338

452	Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 11376-81	11.5	334
451	Social norms as solutions. <i>Science</i> , 2016 , 354, 42-43	33.3	314
450	Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. <i>Nature Geoscience</i> , 2013 , 6, 279-283	18.3	311
449	The role of mosaic phenomena in natural communities. <i>Theoretical Population Biology</i> , 1977 , 12, 117-39	1.2	308
448	A Theoretical Framework for Data Analysis of Wind Dispersal of Seeds and Pollen. <i>Ecology</i> , 1989 , 70, 329-338	4.6	293
447	Uninformed individuals promote democratic consensus in animal groups. <i>Science</i> , 2011 , 334, 1578-80	33.3	290
446	Mathematical and computational challenges in population biology and ecosystems science. <i>Science</i> , 1997 , 275, 334-43	33.3	288
445	Positive feedbacks promote power-law clustering of Kalahari vegetation. <i>Nature</i> , 2007 , 449, 209-12	50.4	285
444	From individuals to aggregations: the interplay between behavior and physics. <i>Journal of Theoretical Biology</i> , 1999 , 196, 397-454	2.3	282
443	Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. <i>Ecology</i> , 2011 , 92, 1063-72	4.6	278
442	The evolution of quorum sensing in bacterial biofilms. <i>PLoS Biology</i> , 2008 , 6, e14	9.7	276
441	Hypothesis for origin of planktonic patchiness. <i>Nature</i> , 1976 , 259, 659-659	50.4	268
440	Dynamical resonance can account for seasonality of influenza epidemics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 16915-6	11.5	260
439	Environment. Looming global-scale failures and missing institutions. <i>Science</i> , 2009 , 325, 1345-6	33.3	259
438	LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNA. <i>Evolution; International Journal of Organic Evolution</i> , 2005 , 59, 720-729	3.8	242
437	Visual sensory networks and effective information transfer in animal groups. <i>Current Biology</i> , 2013 , 23, R709-11	6.3	238
436	Reducing antimicrobial use in food animals. <i>Science</i> , 2017 , 357, 1350-1352	33.3	236
435	Allelopathy in Spatially Distributed Populations. <i>Journal of Theoretical Biology</i> , 1997 , 185, 165-71	2.3	232

434	The Dynamics of Herds: From Individuals to Aggregations. <i>Journal of Theoretical Biology</i> , 1996 , 182, 85	-98 .3	231
433	Coherence and conservation. <i>Science</i> , 2000 , 290, 1360-4	33.3	228
432	Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes. <i>American Naturalist</i> , 2000 , 156, 478-494	3.7	228
431	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. <i>Progress in Oceanography</i> , 2011 , 88, 1-27	3.8	227
430	The dynamics of cocirculating influenza strains conferring partial cross-immunity. <i>Journal of Mathematical Biology</i> , 1997 , 35, 825-42	2	222
429	Evolution of human-driven fire regimes in Africa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 847-52	11.5	215
428	Mechanistic analytical models for long-distance seed dispersal by wind. <i>American Naturalist</i> , 2005 , 166, 368-81	3.7	209
427	Phytoplankton growth and stoichiometry under multiple nutrient limitation. <i>Limnology and Oceanography</i> , 2004 , 49, 1463-1470	4.8	206
426	Limitations of Laboratory Bioassays: The Need for Ecosystem-Level Testing. <i>BioScience</i> , 1985 , 35, 165-	1 7 5.7	205
425	Complex adaptive systems: Exploring the known, the unknown and the unknowable. <i>Bulletin of the American Mathematical Society</i> , 2002 , 40, 3-20	1.3	200
424	Generalized models reveal stabilizing factors in food webs. <i>Science</i> , 2009 , 325, 747-50	33.3	197
423	Ecology and evolution of the flu. <i>Trends in Ecology and Evolution</i> , 2002 , 17, 334-340	10.9	196
422	Spatial aspects of interspecific competition. <i>Theoretical Population Biology</i> , 1998 , 53, 30-43	1.2	196
421	Coevolutionary arms races between bacteria and bacteriophage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 9535-40	11.5	195
420	Epidemiological models with age structure, proportionate mixing, and cross-immunity. <i>Journal of Mathematical Biology</i> , 1989 , 27, 233-58	2	189
419	Aggregation in model ecosystems. I. Perfect aggregation. <i>Ecological Modelling</i> , 1987 , 37, 287-302	3	188
418	Spatial attributes and reserve design models: A review. <i>Environmental Modeling and Assessment</i> , 2005 , 10, 163-181	2	186
417	Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6263-8	11.5	178

416	The Effects of Disturbance Architecture on Landscape-Level Population Dynamics. <i>Ecology</i> , 1996 , 77, 375-394	4.6	177
415	A Simulation Model of the Population Dynamics and Evolution of Myxomatosis. <i>Ecological Monographs</i> , 1990 , 60, 423-447	9	169
414	Sex-Ratio Selection in Species with Helpers-At-The-Nest. <i>American Naturalist</i> , 1986 , 127, 1-8	3.7	169
413	A Spatial Patch Dynamic Modeling Approach to Pattern and Process in an Annual Grassland. <i>Ecological Monographs</i> , 1994 , 64, 447-464	9	167
412	Resilience in natural and socioeconomic systems. <i>Environment and Development Economics</i> , 1998 , 3, 221	1-2.62	161
411	Social Norms and Global Environmental Challenges: The Complex Interaction of Behaviors, Values, and Policy. <i>BioScience</i> , 2013 , 63, 164-175	5.7	156
410	Pattern Generation in Space and Aspect. SIAM Review, 1985, 27, 45-67	7.4	154
409	Multiple Scales and the Maintenance of Biodiversity. <i>Ecosystems</i> , 2000 , 3, 498-506	3.9	150
408	Dispersal in patchy environments: The effects of temporal and spatial structure. <i>Theoretical Population Biology</i> , 1991 , 39, 63-99	1.2	150
407	Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change. <i>Science</i> , 2015 , 347, 651-5	33.3	149
406	The Spread of a Reinvading Species: Range Expansion in the California Sea Otter. <i>American Naturalist</i> , 1988 , 131, 526-543	3.7	147
405	From Management to Stewardship: Viewing Forests As Complex Adaptive Systems in an Uncertain World. <i>Conservation Letters</i> , 2015 , 8, 368-377	6.9	140
404	Fractal reorientation clocks: Linking animal behavior to statistical patterns of search. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 19072-7	11.5	139
403	Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 3709-14	11.5	139
402	Spatial Models for Species-Area Curves. <i>Journal of Theoretical Biology</i> , 1996 , 179, 119-127	2.3	138
401	Analysis of an age-structured fishery model. <i>Journal of Mathematical Biology</i> , 1980 , 9, 245-274	2	138
400	Terrestrial models and global change: challenges for the future. <i>Global Change Biology</i> , 1998 , 4, 581-590	011.4	134
399	Self-organization and the Emergence of Complexity in Ecological Systems. <i>BioScience</i> , 2005 , 55, 1075	5.7	134

(1995-2013)

398	Regime shifts in a social-ecological system. <i>Theoretical Ecology</i> , 2013 , 6, 359-372	1.6	131
397	Cascading regime shifts within and across scales. <i>Science</i> , 2018 , 362, 1379-1383	33.3	128
396	Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. <i>Science</i> , 2020 , 370, 811-818	33.3	121
395	River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. <i>Water Resources Research</i> , 2009 , 45,	5.4	119
394	A note on difference-delay equations. <i>Theoretical Population Biology</i> , 1976 , 9, 178-87	1.2	119
393	Fishery discards impact on seabird movement patterns at regional scales. <i>Current Biology</i> , 2010 , 20, 215	5-823	117
392	Climate change and the integrity of science. <i>Science</i> , 2010 , 328, 689-90	33.3	116
391	Limiting Similarity, Species Packing, and System Stability for Hierarchical Competition-Colonization Models. <i>American Naturalist</i> , 1999 , 153, 371-383	3.7	116
390	Transnational corporations and the challenge of biosphere stewardship. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1396-1403	12.3	116
389	Phytoplankton stoichiometry. <i>Ecological Research</i> , 2008 , 23, 479-485	1.9	113
388	Pathogen-Driven Outbreaks in Forest Defoliators Revisited: Building Models from Experimental Data. <i>American Naturalist</i> , 2000 , 156, 105-120	3.7	112
387	Aggregation in Model Ecosystems II. Approximate Aggregation. <i>Mathematical Medicine and Biology</i> , 1989 , 6, 1-23	1.3	111
386	The dynamics of group formation. <i>Mathematical Biosciences</i> , 1995 , 128, 243-64	3.9	108
385	From individuals to epidemics. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1996 , 351, 1615-21	5.8	108
384	The SIRC model and influenza A. <i>Mathematical Biosciences</i> , 2006 , 200, 152-69	3.9	106
383	Allelopathy of bacteria in a lattice population: Competition between colicin-sensitive and colicin-producing strains. <i>Evolutionary Ecology</i> , 1998 , 12, 785-802	1.8	105
382	Using mathematical optimization models to design nature reserves. <i>Frontiers in Ecology and the Environment</i> , 2004 , 2, 98-105	5.5	105
381	Species diversity and ecosystem response to carbon dioxide fertilization: conclusions from a temperate forest model. <i>Global Change Biology</i> , 1995 , 1, 373-381	11.4	104

380	Integrating theoretical climate and fire effects on savanna and forest systems. <i>American Naturalist</i> , 2012 , 180, 211-24	3.7	102
379	Strategic interactions in multi-institutional epidemics of antibiotic resistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 3153-8	11.5	101
378	On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Part 1: Single population models. <i>Journal of Mathematical Biology</i> , 1989 , 27, 373-98	2	101
377	FROM INDIVIDUALS TO POPULATION DENSITIES: SEARCHING FOR THE INTERMEDIATE SCALE OF NONTRIVIAL DETERMINISM. <i>Ecology</i> , 1999 , 80, 2225-2236	4.6	95
376	MARINE RESERVE DESIGN AND THE EVOLUTION OF SIZE AT MATURATION IN HARVESTED FISH 2005 , 15, 882-901		94
375	Facultative versus obligate nitrogen fixation strategies and their ecosystem consequences. <i>American Naturalist</i> , 2009 , 174, 465-77	3.7	93
374	The Multifaceted Aspects of Ecosystem Integrity. <i>Ecology and Society</i> , 1997 , 1,		93
373	What is blue growth? The semantics of Bustainable Developmentlbf marine environments. <i>Marine Policy</i> , 2018 , 87, 177-179	3.5	92
372	Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. <i>Advances in Water Resources</i> , 2005 , 28, 291-302	4.7	91
371	Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. <i>Science</i> , 2021 , 372, 363-370	33.3	90
370	The evolution of norms. <i>PLoS Biology</i> , 2005 , 3, e194	9.7	89
369	The right incentives enable ocean sustainability successes and provide hope for the future. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14507-1451.	4 ^{11.5}	89
368	Cutting through the complexity of cell collectives. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20122770	4.4	88
367	A Mathematical Model of Coevolving Populations. <i>American Naturalist</i> , 1977 , 111, 657-675	3.7	87
366	Long-distance biological transport processes through the air: can nature's complexity be unfolded in silico?. <i>Diversity and Distributions</i> , 2005 , 11, 131-137	5	86
365	New perspectives in ecotoxicology. <i>Environmental Management</i> , 1984 , 8, 375-442	3.1	86
364	The Dependence of Plant Root: Shoot Ratios on Internal Nitrogen Concentration. <i>Annals of Botany</i> , 1989 , 64, 71-75	4.1	85
363	Dynamic model of flexible phytoplankton nutrient uptake. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20633-8	11.5	84

(2015-2007)

362	Designing marine reserves for interacting species: Insights from theory. <i>Biological Conservation</i> , 2007 , 137, 163-179	6.2	84
361	Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 8701-6	11.5	83
360	Periodicity in Epidemiological Models. <i>Biomathematics</i> , 1989 , 193-211		83
359	Coping with uncertainty: a call for a new science-policy forum. <i>Ambio</i> , 2003 , 32, 330-5	6.5	81
358	Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 1573-8	11.5	80
357	The evolution of dispersal in reserve networks. <i>American Naturalist</i> , 2007 , 170, 59-78	3.7	79
356	Learning to live in a global commons: socioeconomic challenges for a sustainable environment. <i>Ecological Research</i> , 2006 , 21, 328-333	1.9	79
355	The timing of life history events. <i>Journal of Theoretical Biology</i> , 1995 , 172, 33-42	2.3	78
354	Our future in the Anthropocene biosphere. <i>Ambio</i> , 2021 , 50, 834-869	6.5	78
353	HIDDEN EFFECTS OF CHRONIC TUBERCULOSIS IN AFRICAN BUFFALO. <i>Ecology</i> , 2005 , 86, 2358-2364	4.6	77
352	Climate policies under wealth inequality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2212-6	11.5	75
351	The survival of the conformist: social pressure and renewable resource management. <i>Journal of Theoretical Biology</i> , 2012 , 299, 152-61	2.3	74
350	Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 1971-6	11.5	74
349	The effect of global travel on the spread of sars. <i>Mathematical Biosciences and Engineering</i> , 2006 , 3, 205	-18	73
348	Role of economics in analyzing the environment and sustainable development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5233-5238	11.5	72
347	A model of flexible uptake of two essential resources. <i>Journal of Theoretical Biology</i> , 2007 , 246, 278-89	2.3	72
346	Dynamics of influenza A drift: the linear three-strain model. <i>Mathematical Biosciences</i> , 1999 , 162, 33-51	3.9	72
345	Eluding catastrophic shifts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E1828-36	11.5	71

344	A neutral metapopulation model of biodiversity in river networks. <i>Journal of Theoretical Biology</i> , 2007 , 245, 351-63	2.3	71
343	Food production, population growth, and the environment. <i>Science</i> , 1998 , 281, 1291-2	33.3	71
342	Resource limitation in a competitive context determines complex plant responses to experimental resource additions. <i>Ecology</i> , 2013 , 94, 2505-17	4.6	70
341	Size and scaling of predator-prey dynamics. <i>Ecology Letters</i> , 2006 , 9, 548-57	10	69
340	Impact of ocean phytoplankton diversity on phosphate uptake. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17540-5	11.5	68
339	Competition for water and light in closed-canopy forests: a tractable model of carbon allocation with implications for carbon sinks. <i>American Naturalist</i> , 2013 , 181, 314-30	3.7	68
338	Public goods in relation to competition, cooperation, and spite. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111 Suppl 3, 10838-45	11.5	66
337	Decision versus compromise for animal groups in motion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 227-32	11.5	65
336	Local frequency dependence and global coexistence. <i>Theoretical Population Biology</i> , 1999 , 55, 270-82	1.2	65
335	Intraspecific variation and species coexistence. <i>American Naturalist</i> , 2007 , 170, 807-18	3.7	64
334	Economic Pathways to Ecological Sustainability. <i>BioScience</i> , 2000 , 50, 339	5.7	64
333	Diversity in current ecological thinking: implications for environmental management. <i>Environmental Management</i> , 2009 , 43, 17-27	3.1	63
332	A global movement toward an ecosystem approach to management of marine resources. <i>Marine Ecology - Progress Series</i> , 2005 , 300, 275-279	2.6	63
331	Merging economics and epidemiology to improve the prediction and management of infectious disease. <i>EcoHealth</i> , 2014 , 11, 464-75	3.1	62
330	Cooperation among microorganisms. <i>PLoS Biology</i> , 2006 , 4, e299	9.7	62
329	The effects of population heterogeneity on disease invasion. <i>Mathematical Biosciences</i> , 1995 , 128, 25-4	103.9	61
328	Toward a Dynamic Metacommunity Approach to Marine Reserve Theory. <i>BioScience</i> , 2004 , 54, 1003	5.7	60
327	Perspectives in Ecological Theory 1989 ,		60

326	THEORETICAL PERSPECTIVES ON EVOLUTION OF LONG-DISTANCE DISPERSAL AND THE EXAMPLE OF SPECIALIZED PESTS. <i>Ecology</i> , 2003 , 84, 1957-1967	4.6	58	
325	Self-organization of Front Patterns in Large Wildebeest Herds. <i>Journal of Theoretical Biology</i> , 1993 , 165, 541-552	2.3	58	
324	To breed or not to breed: a model of partial migration. <i>Oikos</i> , 2011 , 120, 1871-1879	4	56	
323	Ecology. Hatcheries and endangered salmon. <i>Science</i> , 2004 , 303, 1980	33.3	56	
322	Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states 2011 , 92, 1063		56	
321	Slowing Down of Recovery as Generic Risk Marker for Acute Severity Transitions in Chronic Diseases. <i>Critical Care Medicine</i> , 2016 , 44, 601-6	1.4	56	
320	Can stable social groups be maintained by homophilous imitation alone?. <i>Journal of Economic Behavior and Organization</i> , 2005 , 57, 267-286	1.6	55	
319	Managing Ecosystem Resources[]Environmental Science & amp; Technology, 2000, 34, 1401-1406	10.3	55	
318	Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. <i>Applied Mathematics Letters</i> , 1989 , 2, 327-331	3.5	55	
317	Traveling waves in a model of influenza A drift. Journal of Theoretical Biology, 2003, 222, 437-45	2.3	53	
316	Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. <i>Nature Plants</i> , 2015 , 1, 15182	11.5	52	
315	Scale and Scaling in Ecological and Economic Systems. <i>Environmental and Resource Economics</i> , 2003 , 26, 527-557	4.4	52	
314	OSCILLATORY DYNAMICS AND SPATIAL SCALE: THE ROLE OF NOISE AND UNRESOLVED PATTERN. <i>Ecology</i> , 2001 , 82, 2357-2369	4.6	52	
313	A collective navigation hypothesis for homeward migration in anadromous salmonids. <i>Fish and Fisheries</i> , 2016 , 17, 525-542	6	51	
312	Building resilience and adaptation to manage Arctic change. <i>Ambio</i> , 2006 , 35, 198-202	6.5	51	
311	A patch-based spatial modeling approach: conceptual framework and simulation scheme. <i>Ecological Modelling</i> , 1997 , 101, 325-346	3	50	
310	"Critical slowing down" in time-to-extinction: an example of critical phenomena in ecology. <i>Journal of Theoretical Biology</i> , 1998 , 192, 363-76	2.3	49	
309	The Role of Theoretical Ecology in the Description and Understanding of Populations in Heterogeneous Environments. <i>American Zoologist</i> , 1981 , 21, 865-875		49	

308	Fitness tradeoffs between spores and nonaggregating cells can explain the coexistence of diverse genotypes in cellular slime molds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2776-81	11.5	48
307	Evolutionary escape from the prisoner's dilemma. <i>Journal of Theoretical Biology</i> , 2007 , 245, 411-22	2.3	48
306	Human-environment interactions in population and ecosystem health. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 14502-14506	11.5	48
305	Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7213-8	11.5	47
304	Dynamics of Decision Making in Animal Group Motion. <i>Journal of Nonlinear Science</i> , 2009 , 19, 399-435	2.8	47
303	Economic Growth, Carrying Capacity, and the Environment 1996 , 6, 13-15		47
302	Urban ecology: advancing science and society. Frontiers in Ecology and the Environment, 2014, 12, 574-5	89 .5	46
301	PHYSIOLOGICAL AND BEHAVIORAL ADAPTATION TO VARYING ENVIRONMENTS: A MATHEMATICAL MODEL. <i>Evolution; International Journal of Organic Evolution</i> , 1988 , 42, 986-994	3.8	45
300	Modeling tiger population and territory dynamics using an agent-based approach. <i>Ecological Modelling</i> , 2015 , 312, 347-362	3	44
299	Genetic diversity and interdependent crop choices in agriculture. <i>Resources and Energy Economics</i> , 2004 , 26, 175-184	3.2	44
298	ERROR PROPAGATION IN A FOREST SUCCESSION MODEL:THE ROLE OF FINE-SCALE HETEROGENEITY IN LIGHT. <i>Ecology</i> , 1999 , 80, 1927-1943	4.6	44
297	Spread of two linked social norms on complex interaction networks. <i>Journal of Theoretical Biology</i> , 2004 , 230, 57-64	2.3	43
296	On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. <i>PLoS Computational Biology</i> , 2007 , 3, e159	5	42
295	Specialization and evolutionary branching within migratory populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 20394-9	11.5	41
294	Evolution and persistence of influenza A and other diseases. <i>Mathematical Biosciences</i> , 2004 , 188, 17-28	3 3.9	41
293	Pattern and scale in a serpentine grassland. <i>Theoretical Population Biology</i> , 1992 , 41, 257-276	1.2	41
292	Evolutionary stability of plant communities and the maintenance of multiple dispersal types. <i>Theoretical Population Biology</i> , 1991 , 40, 285-307	1.2	40
291	The growth of finfish in global open-ocean aquaculture under climate change. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2017 , 284,	4.4	39

290	Evolution of a modular software network. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19985-9	11.5	39
289	Universality in Bacterial Colonies. <i>Journal of Statistical Physics</i> , 2011 , 144, 303-315	1.5	39
288	Characterizing fisheries connectivity in marine social@cological systems. <i>ICES Journal of Marine Science</i> , 2017 , 74, 2087-2096	2.7	38
287	Implications of the spatial dynamics of fire spread for the bistability of savanna and forest. <i>Journal of Mathematical Biology</i> , 2015 , 70, 329-41	2	38
286	Wealth reallocation and sustainability under climate change. <i>Nature Climate Change</i> , 2016 , 6, 237-244	21.4	38
285	Age structure, residents, and transients of Miocene rodent communities. <i>American Naturalist</i> , 2005 , 165, E108-25	3.7	38
284	Models of the influence of predation on aspect diversity in prey populations. <i>Journal of Mathematical Biology</i> , 1982 , 14, 253-84	2	38
283	Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E880-7	11.5	37
282	The Interaction between Dispersal and Dormancy Strategies in Varying and Heterogeneous Environments. <i>Lecture Notes in Biomathematics</i> , 1987 , 110-122		37
281	Bottomlp and toplown forcing in a simple size-structured plankton dynamics model. <i>Journal of Marine Systems</i> , 2008 , 74, 134-152	2.7	36
280	Coupled ecological-social dynamics in a forested landscape: spatial interactions and information flow. <i>Journal of Theoretical Biology</i> , 2007 , 246, 695-707	2.3	36
279	Economic growth, carrying capacity, and the environment*. <i>Environment and Development Economics</i> , 1996 , 1, 104-110	1.8	36
278	Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. <i>AIP Conference Proceedings</i> , 1976 ,	O	36
277	Managing water-use trade-offs in a semi-arid river delta to sustain multiple ecosystem services: a modeling approach. <i>Ecological Research</i> , 2009 , 24, 491-503	1.9	35
276	Towards a Science of Ecological Management. <i>Ecology and Society</i> , 1999 , 3,		35
275	Use antimicrobials wisely. <i>Nature</i> , 2016 , 537, 159-61	50.4	35
274	Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios. <i>Global Change Biology</i> , 2014 , 20, 1299-312	11.4	34
273	Mechanistic analysis of the search behaviour of Caenorhabditis elegans. <i>Journal of the Royal Society Interface</i> , 2014 , 11, 20131092	4.1	34

272	Managing the climate commons at the nexus of ecology, behaviour and economics. <i>Nature Climate Change</i> , 2014 , 4, 1057-1063	21.4	34
271	On the use of hemagglutination-inhibition for influenza surveillance: surveillance data are predictive of influenza vaccine effectiveness. <i>Vaccine</i> , 2009 , 27, 2447-52	4.1	34
270	Ecological Science and the Human Predicament 1998 , 282, 879c-879		34
269	On the evolutionary interplay between dispersal and local adaptation in heterogeneous environments. <i>Evolution; International Journal of Organic Evolution</i> , 2015 , 69, 1390-1405	3.8	33
268	Coupling ecology and evolution: malaria and the S-gene across time scales. <i>Mathematical Biosciences</i> , 2004 , 189, 1-19	3.9	33
267	A Mathematical Analysis of the Genetic Feedback Mechanism. <i>American Naturalist</i> , 1972 , 106, 145-164	3.7	33
266	The evolution of intermittent breeding. <i>Journal of Mathematical Biology</i> , 2013 , 66, 685-703	2	32
265	Functional biogeography of ocean microbes revealed through non-negative matrix factorization. <i>PLoS ONE</i> , 2012 , 7, e43866	3.7	32
264	Observing bacteria through the lens of social evolution. <i>Journal of Biology</i> , 2008 , 7, 27		32
263	16. Challenges in the Development of a Theory of Community and Ecosystem Structure and Function 1989 , 242-255		32
262	On the complex dynamics of savanna landscapes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E1336-E1345	11.5	31
261	The role of size inequality in self-thinning: A pattern-oriented simulation model for arid savannas. <i>Ecological Modelling</i> , 2008 , 210, 431-445	3	31
260	Evolution of cooperation on temporal networks. <i>Nature Communications</i> , 2020 , 11, 2259	17.4	30
259	Beyond Ebola: lessons to mitigate future pandemics. <i>The Lancet Global Health</i> , 2015 , 3, e354-5	13.6	30
258	A model for variable phytoplankton stoichiometry based on cell protein regulation. <i>Biogeosciences</i> , 2013 , 10, 4341-4356	4.6	30
257	Long-Distance Dispersal1. <i>Ecology</i> , 2003 , 84, 1943-1944	4.6	30
256	The role of phytoplankton diversity in the emergent oceanic stoichiometry. <i>Journal of Plankton Research</i> , 2016 , 38, 1021-1035	2.2	29
255	From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2018 , 373,	5.8	29

(2000-2007)

2	54	Synchronized deforestation induced by social learning under uncertainty of forest-use value. <i>Ecological Economics</i> , 2007 , 63, 452-462	5.6	29	
2	53	Diffuse coevolution in plant-herbivore communities. <i>Theoretical Population Biology</i> , 1990 , 37, 171-191	1.2	29	
2	.52	Patchiness and Demographic Noise in Three Ecological Examples. <i>Journal of Statistical Physics</i> , 2012 , 148, 724-740	1.5	28	
2	.51	Superdiffusion and encounter rates in diluted, low dimensional worlds. <i>European Physical Journal:</i> Special Topics, 2008 , 157, 157-166	2.3	28	
2	.50	Tragedy of the commons in plant water use. Water Resources Research, 2006, 42,	5.4	28	
2	49	Equation-free modelling of evolving diseases: coarse-grained computations with individual-based models. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2004 , 460, 2761-2779	2.4	27	
2	.48	Superinfection and the evolution of resistance to antimalarial drugs. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 3834-42	4.4	26	
2	47	Stigmergy, collective actions, and animal social spacing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16904-9	11.5	26	
2	.46	Fusing enacted and expected mimicry generates a winning strategy that promotes the evolution of cooperation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10229-33	11.5	26	
2	45	Hydrologic controls and anthropogenic drivers of the zebra mussel invasion of the Mississippi-Missouri river system. <i>Water Resources Research</i> , 2011 , 47,	5.4	26	
2	44	The evolution of resource adaptation: how generalist and specialist consumers evolve. <i>Bulletin of Mathematical Biology</i> , 2006 , 68, 1111-23	2.1	26	
2	43	Competition and species packing in patchy environments. <i>Theoretical Population Biology</i> , 2002 , 61, 265-	·7162	26	
2	.42	Nucleation and relaxation from meta-stability in spatial ecological models. <i>Journal of Theoretical Biology</i> , 1999 , 200, 121-46	2.3	26	
2	41	Evolutionary comparison between viral lysis rate and latent period. <i>Journal of Theoretical Biology</i> , 2014 , 345, 32-42	2.3	25	
2	.40	Quick Fixes for the Environment: Part of the Solution or Part of the Problem?. <i>Environment</i> , 2006 , 48, 20-27	2.8	25	
2	39	Reproductive asynchrony increases with environmental disturbance. <i>Evolution; International Journal of Organic Evolution</i> , 2001 , 55, 830-4	3.8	25	
2	.38	Lessons on pattern formation from planet WATOR. Journal of Theoretical Biology, 2000, 205, 201-14	2.3	25	
2	37	Moment Methods for Ecological Processes in Continuous Space 2000 , 388-411		25	

236	MAINTENANCE OF THE THREE SEX CHROMOSOME POLYMORPHISM IN THE PLATYFISH, XIPHOPHORUS MACULATUS. <i>Evolution; International Journal of Organic Evolution</i> , 1980 , 34, 663-672	3.8	25
235	Pattern Formation in Ecological Communities 1978 , 433-465		25
234	A More Functional Response to Predator-Prey Stability. <i>American Naturalist</i> , 1977 , 111, 381-383	3.7	25
233	Conversations with the Community: AAAS at the Millennium. <i>Science</i> , 1997 , 278, 2066-2067	33.3	24
232	Bursts of nonsynonymous substitutions in HIV-1 evolution reveal instances of positive selection at conservative protein sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 19396-401	11.5	24
231	Competitive coexistence in a dynamic landscape. <i>Theoretical Population Biology</i> , 2004 , 66, 341-53	1.2	24
230	Disease transmission dynamics and the evolution of antibiotic resistance in hospitals and communal settings. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 800-	1 ^{11.5}	24
229	Natural search algorithms as a bridge between organisms, evolution, and ecology. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 9413-20	11.5	24
228	Conserved behavioral circuits govern high-speed decision-making in wild fish shoals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12224-12228	11.5	24
227	Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods. <i>Ecosystems</i> , 2017 , 20, 458-476	3.9	23
226	Robustness of norm-driven cooperation in the commons. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	23
225	The pleasure of pursuit: recreational hunters in rural Southwest China exhibit low exit rates in response to declining catch. <i>Ecology and Society</i> , 2017 , 22,	4.1	23
224	Crossing scales, crossing disciplines: collective motion and collective action in the Global Commons. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 13-8	5.8	23
223	Global asymptotic coherence in discrete dynamical systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 3968-71	11.5	23
222	Cooperation in the Climate Commons. Review of Environmental Economics and Policy, 2019, 13, 227-247	6	22
221	Collective behavior as a driver of critical transitions in migratory populations. <i>Movement Ecology</i> , 2016 , 4, 18	4.6	20
220	Dealing with femtorisks in international relations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17356-62	11.5	20
219	Evolution of dispersal in explicitly spatial metacommunities. <i>Journal of Theoretical Biology</i> , 2011 , 269, 256-65	2.3	20

218	Evolution and spatial structure interact to influence plantflerbivore population and community dynamics. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1997 , 264, 1677-1685	4.4	20
217	The evolution of intergenerational discounting in offspring quality. <i>American Naturalist</i> , 2005 , 165, 311	- 2 :17	20
216	Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10792-1079	7 ^{11.5}	19
215	Social information use and the evolution of unresponsiveness in collective systems. <i>Journal of the Royal Society Interface</i> , 2015 , 12,	4.1	19
214	Linking plant disease risk and precipitation drivers: a dynamical systems framework. <i>American Naturalist</i> , 2013 , 181, E1-16	3.7	19
213	Eavesdropping and language dynamics. <i>Journal of Theoretical Biology</i> , 2010 , 264, 104-18	2.3	19
212	Environmental economics. False alarm over environmental false alarms. <i>Science</i> , 2003 , 301, 1187-8	33.3	19
211	Vaccine nationalism and the dynamics and control of SARS-CoV-2. <i>Science</i> , 2021 , 373, eabj7364	33.3	19
210	The Problem of Pattern and Scale in Ecology 1992 , 277-326		19
209	Physical limits on bacterial navigation in dynamic environments. <i>Journal of the Royal Society Interface</i> , 2016 , 13, 20150844	4.1	18
208	Age-Structure and Stability in Multiple-Age Spawning Populations. <i>Lecture Notes in Biomathematics</i> , 1981 , 21-45		18
207	Social dimensions of fertility behavior and consumption patterns in the Anthropocene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6300-6307	11.5	17
206	Heterogeneous Preference and Local Nonlinearity in Consensus Decision Making. <i>Physical Review Letters</i> , 2016 , 116, 038701	7.4	17
205	Decentralize, adapt and cooperate. <i>Nature</i> , 2010 , 465, 292-3	50.4	17
204	How can vaccines against influenza and other viral diseases be made more effective?. <i>PLoS Biology</i> , 2010 , 8, e1000571	9.7	17
203	Intergenerational resource transfers with random offspring numbers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13702-6	11.5	17
202	The dynamics of bacteria-plasmid systems. <i>Journal of Mathematical Biology</i> , 1994 , 32, 123-145	2	17
201	Population Models and Community Structure in Heterogeneous Environments. <i>Biomathematics</i> , 1986 , 295-320		17

200	Coevolution. Lecture Notes in Biomathematics, 1983, 328-334		17
199	Optimal, near-optimal, and robust epidemic control. <i>Communications Physics</i> , 2021 , 4,	5.4	17
198	Perceived entertainment and recreational value motivate illegal hunting in Southwest China. <i>Biological Conservation</i> , 2019 , 234, 100-106	6.2	16
197	How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration-exploitation trade-offs. <i>Ecology Letters</i> , 2018 , 21, 779-793	10	16
196	Reciprocal insurance among Kenyan pastoralists. <i>Theoretical Ecology</i> , 2013 , 6, 173-187	1.6	16
195	Modeling responses of coupled sociald cological systems of the Gulf of California to anthropogenic and natural perturbations. <i>Ecological Research</i> , 2009 , 24, 505-519	1.9	16
194	Spatial scaling in a benthic population model with density-dependent disturbance. <i>Theoretical Population Biology</i> , 1999 , 56, 106-22	1.2	16
193	On the boundedness of an iterative procedure for solving a system of linear inequalities. <i>Proceedings of the American Mathematical Society</i> , 1970 , 26, 229-229	0.8	16
192	Concepts of Scale at the Local Level 1993 , 7-19		16
191	Caring for the future can turn tragedy into comedy for long-term collective action under risk of collapse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 125	915-12	922
191 190	Caring for the future can turn tragedy into comedy for long-term collective action under risk of collapse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 125. Extreme temperature events will drive coral decline in the Coral Triangle. <i>Global Change Biology</i> , 2019 , 26, 2120	9 15- 52 11.4	9 2 2
	collapse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 129 Extreme temperature events will drive coral decline in the Coral Triangle. <i>Global Change Biology</i> ,		16
190	collapse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 129 Extreme temperature events will drive coral decline in the Coral Triangle. <i>Global Change Biology</i> , 2019 , 26, 2120 Spatial patterning among savanna trees in high-resolution, spatially extensive data. <i>Proceedings of</i>	11.4	16
190 189	collapse. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 129 Extreme temperature events will drive coral decline in the Coral Triangle. Global Change Biology, 2019, 26, 2120 Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10681-10685 Disease at the wildlife-livestock interface: acaricide use on domestic cattle does not prevent	11.4	16
190 189 188	Extreme temperature events will drive coral decline in the Coral Triangle. <i>Global Change Biology</i> , 2019 , 26, 2120 Spatial patterning among savanna trees in high-resolution, spatially extensive data. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 10681-10685 Disease at the wildlife-livestock interface: acaricide use on domestic cattle does not prevent transmission of a tick-borne pathogen with multiple hosts. <i>Veterinary Parasitology</i> , 2014 , 199, 206-14 Opinion: A new approach to financial regulation. <i>Proceedings of the National Academy of Sciences of</i>	11.4 11.5 2.8	16 15 15
190 189 188	Extreme temperature events will drive coral decline in the Coral Triangle. <i>Global Change Biology</i> , 2019 , 26, 2120 Spatial patterning among savanna trees in high-resolution, spatially extensive data. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 10681-10685 Disease at the wildlife-livestock interface: acaricide use on domestic cattle does not prevent transmission of a tick-borne pathogen with multiple hosts. <i>Veterinary Parasitology</i> , 2014 , 199, 206-14 Opinion: A new approach to financial regulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12543-4	11.4 11.5 2.8 11.5	16151515
190 189 188 187	Extreme temperature events will drive coral decline in the Coral Triangle. <i>Global Change Biology</i> , 2019 , 26, 2120 Spatial patterning among savanna trees in high-resolution, spatially extensive data. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 10681-10685 Disease at the wildlife-livestock interface: acaricide use on domestic cattle does not prevent transmission of a tick-borne pathogen with multiple hosts. <i>Veterinary Parasitology</i> , 2014 , 199, 206-14 Opinion: A new approach to financial regulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 12543-4 Epidemic enhancement in partially immune populations. <i>PLoS ONE</i> , 2007 , 2, e165	11.4 11.5 2.8 11.5	1615151515

182	Spatial feedbacks and the dynamics of savanna and forest. <i>Theoretical Ecology</i> , 2019 , 12, 237-262	1.6	14
181	Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 11541-11550	11.5	14
180	Consensus and polarization in competing complex contagion processes. <i>Journal of the Royal Society Interface</i> , 2019 , 16, 20190196	4.1	14
179	Multiscale analysis of collective motion and decision-making in swarms: an advection-diffusion equation with memory approach. <i>Journal of Theoretical Biology</i> , 2010 , 264, 893-913	2.3	14
178	Spatial and Biological Aspects of Reserve Design. Environmental Modeling and Assessment, 2002, 7, 115-	-1222	14
177	Native harvester ants threatened with widespread displacement exert localized effects on serpentine grassland plant community composition. <i>Oikos</i> , 2005 , 109, 351-359	4	14
176	Principles of nonlinear superposition. <i>Journal of Mathematical Analysis and Applications</i> , 1970 , 30, 197-2	20:51	14
175	Mobility can promote the evolution of cooperation via emergent self-assortment dynamics. <i>PLoS Computational Biology</i> , 2017 , 13, e1005732	5	14
174	Analysis of the potential impact of durability, timing, and transmission blocking of COVID-19 vaccine on morbidity and mortality. <i>EClinicalMedicine</i> , 2021 , 35, 100863	11.3	14
173	Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO₂. <i>Biogeosciences</i> , 2018 , 15, 2761-2779	4.6	14
172	Link recommendation algorithms and dynamics of polarization in online social networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	14
171	Spatial heterogeneity can resolve the nitrogen paradox of tropical forests. <i>Ecology</i> , 2017 , 98, 1049-106	14.6	13
170	Contributions of gopher mound and casting disturbances to plant community structure in a Cascade Range meadow complex. <i>Botany</i> , 2013 , 91, 555-561	1.3	13
169	On biodiversity in river networks: A trade-off metapopulation model and comparative analysis. Water Resources Research, 2007, 43,	5.4	13
168	Economic and Behavioral Influencers of Vaccination and Antimicrobial Use. <i>Frontiers in Public Health</i> , 2020 , 8, 614113	6	13
167	The Problem of Pattern and Scale in Ecology 1995 , 277-326		13
166	Evolution of cooperation and skew under imperfect information. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 14936-41	11.5	12
165	Heterogeneous animal group models and their group-level alignment dynamics: an equation-free approach. <i>Journal of Theoretical Biology</i> , 2007 , 246, 100-12	2.3	12

164	Global stability in a chemostat with multiple nutrients. Journal of Mathematical Biology, 2006, 52, 419-	382	12
163	Asynchrony between virus diversity and antibody selection limits influenza virus evolution. <i>ELife</i> , 2020 , 9,	8.9	12
162	Incomplete cooperation and co-benefits: deepening climate cooperation with a proliferation of small agreements. <i>Climatic Change</i> , 2017 , 144, 65-79	4.5	11
161	The potential for alternative stable states in nutrient-enriched invaded grasslands. <i>Theoretical Ecology</i> , 2015 , 8, 399-417	1.6	11
160	Sustainability as Adaptability 2012 , 24, 14-22		11
159	Cross-reactive immune responses as primary drivers of malaria chronicity. <i>Infection and Immunity</i> , 2014 , 82, 140-51	3.7	11
158	Patterns and Prediction in Microbial Oceanography. <i>Oceanography</i> , 2007 , 20, 34-46	2.3	11
157	Moment expansions in spatial ecological models and moment closure through Gaussian approximation. <i>Bulletin of Mathematical Biology</i> , 2000 , 62, 595-632	2.1	11
156	Interpreting ecological patterns generated through simple stochastic processes. <i>Landscape Ecology</i> , 1991 , 5, 163-174	4.3	11
155	WTO must ban harmful fisheries subsidies. <i>Science</i> , 2021 , 374, 544	33.3	11
155 154	WTO must ban harmful fisheries subsidies. <i>Science</i> , 2021 , 374, 544 Path-dependent institutions drive alternative stable states in conservation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 689-694	33.3	11
	Path-dependent institutions drive alternative stable states in conservation. <i>Proceedings of the</i>		
154	Path-dependent institutions drive alternative stable states in conservation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 689-694 Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry.	11.5	11
154 153	Path-dependent institutions drive alternative stable states in conservation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 689-694 Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190254	11.5 5.8	11
154 153 152	Path-dependent institutions drive alternative stable states in conservation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 689-694 Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190254 Global Marine Fishing across Space and Time. <i>Sustainability</i> , 2020 , 12, 4714 An extra dimension to decision-making in animals: the three-way trade-off between speed, effort	11.5 5.8 3.6	11 10 10
154 153 152 151	Path-dependent institutions drive alternative stable states in conservation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 689-694 Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190254 Global Marine Fishing across Space and Time. <i>Sustainability</i> , 2020 , 12, 4714 An extra dimension to decision-making in animals: the three-way trade-off between speed, effort per-unit-time and accuracy. <i>PLoS Computational Biology</i> , 2014 , 10, e1003937	11.55.83.65	11 10 10 10
154 153 152 151 150	Path-dependent institutions drive alternative stable states in conservation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 689-694 Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190254 Global Marine Fishing across Space and Time. <i>Sustainability</i> , 2020 , 12, 4714 An extra dimension to decision-making in animals: the three-way trade-off between speed, effort per-unit-time and accuracy. <i>PLoS Computational Biology</i> , 2014 , 10, e1003937 Towards the marriage of theory and data. <i>Interface Focus</i> , 2012 , 2, 141-3 Relationship between treatment-seeking behaviour and artemisinin drug quality in Ghana. <i>Malaria</i>	11.5 5.8 3.6 5	11 10 10 10 10

146	Modelling the Effects of Current on Prey Acquisition in Planktivorous Fishes. <i>Marine and Freshwater Behaviour and Physiology</i> , 2002 , 35, 69-85	1.1	10
145	The emergence of diversity in plant communities. <i>Comptes Rendus De Lh</i> Acadhie Des Sciences Shie 3, Sciences De La Vie, 2000 , 323, 129-39		10
144	Distinctions between the two-state and sequential models for cooperative ligand binding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1977 , 74, 139-43	11.5	10
143	Landscape sustainability science in the drylands: mobility, rangelands and livelihoods. <i>Landscape Ecology</i> , 2020 , 35, 2433-2447	4.3	10
142	Emergent Field-Driven Robot Swarm States. <i>Physical Review Letters</i> , 2021 , 126, 108002	7.4	10
141	Fish and fisheries in hot water: What is happening and how do we adapt?. <i>Population Ecology</i> , 2021 , 63, 17-26	2.1	10
140	Segregation and clustering of preferences erode socially beneficial coordination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	10
139	Incentivizing hospital infection control. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 6221-6225	11.5	9
138	Ecological and evolutionary dynamics of interconnectedness and modularity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 750-755	11.5	9
137	Revenue-sharing clubs provide economic insurance and incentives for sustainability in common-pool resource systems. <i>Journal of Theoretical Biology</i> , 2018 , 454, 205-214	2.3	9
136	Disease risk mitigation: the equivalence of two selective mixing strategies on aggregate contact patterns and resulting epidemic spread. <i>Journal of Theoretical Biology</i> , 2014 , 363, 262-70	2.3	9
135	12. Theories of Simplification and Scaling of Spatially Distributed Processes 1998 , 271-295		9
134	Interindividual cooperation mediated by partisanship complicates Madison's cure for "mischiefs of faction". <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	9
133	Random Walk Models of Movement and Their Implications. <i>Biomathematics</i> , 1986 , 149-154		9
132	Pattern, Scale, and Variability: An Ecological Perspective. Lecture Notes in Biomathematics, 1988, 1-12		9
131	Localized prosocial preferences, public goods, and common-pool resources. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5305-5310	11.5	9
130	Stability and recovery of coral-algae systems: the importance of recruitment seasonality and grazing influence. <i>Theoretical Ecology</i> , 2019 , 12, 61-72	1.6	8
129	Dynamical models of ecosystems and epidemics. <i>Future Generation Computer Systems</i> , 1989 , 5, 265-274	7.5	8

Terrestrial models and global change: challenges for the future. Global Change Biology, 1998, 4, 581-59011.4 128 Some Perspectives on Linked Ecosystems and Socioeconomic Systems 2014, 95-116 127 Corridors of Clarity: Four Principles to Overcome Uncertainty Paralysis in the Anthropocene. 8 126 5.7 BioScience, 2020, 70, 1139-1144 Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes 2021, 125 Trajectory of individual immunity and vaccination required for SARS-CoV-2 community immunity: a 8 124 4.1 conceptual investigation. Journal of the Royal Society Interface, 2021, 18, 20200683 Irrigated areas drive irrigation water withdrawals. Nature Communications, 2021, 12, 4525 17.4 8 123 Combating climate change with matching-commitment agreements. Scientific Reports, 2020, 10, 10251 4.9 122 7 Coalition-structured governance improves cooperation to provide public goods. Scientific Reports, 121 4.9 2020, 10, 9194 Economic Incentives in the Socially Optimal Management of Infectious Disease: When [Formula: see 120 7 3.1 text] is Not Enough. *EcoHealth*, **2018**, 15, 274-289 Effects of human-induced prey depletion on large carnivores in protected areas: Lessons from 119 2.8 modeling tiger populations in stylized spatial scenarios. Ecology and Evolution, 2019, 9, 11298-11313 Potential ecological consequences of genetically engineered organisms. *Environmental* 118 3.1 7 Management, 1986, 10, 495-513 Scale and Predictability in Ecological Modeling. Lecture Notes in Biomathematics, 1987, 2-10 117 The emergence of regularity and variability in marine ecosystems: the combined role of physics, 116 1.8 7 chemistry and biology. Scientia Marina, 2011, 75, 719-731 Modeling and Analysis of the Spread of COVID-19 Under a Multiple-Strain Model with Mutations 115 7 Biodiversity: Interfacing Populations and Ecosystems 1997, 277-288 114 7 Opportunities for agent-based modelling in human dimensions of fisheries. Fish and Fisheries, 2020, 6 113 21.570-587 An invitation for more research on transnational corporations and the biosphere. Nature Ecology 112 12.3 6 and Evolution, 2020, 4, 494 Dispersal Increases the Resilience of Tropical Savanna and Forest Distributions. American Naturalist, 6 111 3.7 **2020**, 195, 833-850

(2021-2012)

110	Elinor Ostrom: An uncommon woman for the commons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13135-13136	11.5	6
109	Signatures of vegetational functional diversity in river basins. Water Resources Research, 2008, 44,	5.4	6
108	Global cooperation achieved through small behavioral changes among strangers. <i>Complexity</i> , 2000 , 5, 14-19	1.6	6
107	9. Biologically Generated Spatial Pattern and the Coexistence of Competing Species 1998 , 204-232		6
106	Immune Systems and Ecosystems. <i>Ecology and Society</i> , 2001 , 5,		6
105	Influenza and Some Related Mathematical Models. <i>Biomathematics</i> , 1989 , 235-252		6
104	The dynamics of political polarization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
103	Evolutionary dynamics of collective index insurance. <i>Journal of Mathematical Biology</i> , 2016 , 72, 997-101	O ₂	5
102	On nonstable and stable population momentum. <i>Demography</i> , 2011 , 48, 1581-99	3.5	5
101	Vertically structured prokaryotic community can control the efficiency of the biological pump in the oceans. <i>Theoretical Ecology</i> , 2009 , 2, 199-216	1.6	5
100	Consumption, Investment, and Future Well-Being: Reply to Daly et al <i>Conservation Biology</i> , 2007 , 21, 1363-1365	6	5
99	Components of spatial patterning in a serpentine grassland. <i>Ecological Research</i> , 2003 , 18, 405-421	1.9	5
98	Social Creation of Pro-social Preferences for Collective Action 2017 , 127-143		5
97	The Problem of Relevant Detail. <i>Lecture Notes in Biomathematics</i> , 1991 , 9-15		5
96	Cascading regime shifts within and across scales		5
95	Cutting Through the Noise: Bacterial Chemotaxis in Marine Microenvironments. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	5
94	Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. <i>PLoS Computational Biology</i> , 2020 , 16, e1008051	5	5
93	Dynamics of informal risk sharing in collective index insurance. <i>Nature Sustainability</i> , 2021 , 4, 426-432	22.1	5

92	The social benefits of private infectious disease-risk mitigation. <i>Theoretical Ecology</i> , 2015 , 8, 467-479	1.6	4
91	Probabilistic Foundations of Spatial Mean-Field Models in Ecology and Applications. <i>SIAM Journal on Applied Dynamical Systems</i> , 2020 , 19, 2682-2719	2.8	4
90	Decision Accuracy and the Role of Spatial Interaction in Opinion Dynamics. <i>Journal of Statistical Physics</i> , 2013 , 151, 203-217	1.5	4
89	Linking dispersal and immigration in multidimensional environments. <i>Bulletin of Mathematical Biology</i> , 2012 , 74, 1754-63	2.1	4
88	Comparison between perfect information and passive daptive social learning models of forest harvesting. <i>Theoretical Ecology</i> , 2008 , 1, 189-197	1.6	4
87	Redwoods: a population model debunked. <i>Science</i> , 1971 , 174, 435-6	33.3	4
86	Risk transfer policies and climate-induced immobility among smallholder farmers. <i>Nature Climate Change</i> , 2021 , 11, 1046-1054	21.4	4
85	MODELS OF POPULATION DISPERSAL 1981 , 1-18		4
84	Immuno-epidemiological life-history and the dynamics of SARS-CoV-2 over the next five years		4
83	Linking Multiscalar Fisheries Using Metacoupling Models. Frontiers in Marine Science, 2020, 7,	4.5	4
82	Local, Global, Multi-Level: Market Structure and Multi-Species Fishery Dynamics. <i>Ecological Economics</i> , 2019 , 156, 185-195	5.6	4
81	Scale and Scaling in Ecological and Economic Systems. <i>The Economics of Non-market Goods and Resources</i> , 2004 , 29-59	O	4
80	Short-range dispersal maintains a volatile marine metapopulation: the brown alga Postelsia palmaeformis. <i>Ecology</i> , 2017 , 98, 1560-1573	4.6	3
79	The content and availability of information affects the evolution of social-information gathering strategies. <i>Theoretical Ecology</i> , 2016 , 9, 455-476	1.6	3
78	REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE. <i>Evolution;</i> International Journal of Organic Evolution, 2007 , 55, 830-834	3.8	3
77	On Karl Hadeler becoming 70. <i>Journal of Mathematical Biology</i> , 2006 , 53, 496-8	2	3
76	Introduction: Infectious diseases. Environment and Development Economics, 2007, 12, 625-626	1.8	3
75	ECOLOGY: Remodeled Foundations. <i>Science</i> , 2007 , 316, 1699-1700	33.3	3

(1981-1999)

74	Error Propagation in a Forest Succession Model: The Role of Fine-Scale Heterogeneity in Light. <i>Ecology</i> , 1999 , 80, 1927	4.6	3
73	Ecotoxicology: Problems and Approaches 1989 , 3-7		3
72	Safety standards for the environmental release of genetically engineered organisms. <i>Trends in Biotechnology</i> , 1988 , 6, S47-S49	15.1	3
71	Fundamental limitations on efficiently forecasting certain epidemic measures in network models Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,	11.5	3
70	Topics in Evolutionary Ecology 1990 , 327-358		3
69	Vaccine nationalism and the dynamics and control of SARS-CoV-2		3
68	The architecture of robustness 2019 , 16-23		3
67	Reply to Charra et al.: Global longitudinal assessment of 2019 changes in defined daily doses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11433-E1143	{ 1 .5	3
66	Governance in the Face of Extreme Events: Lessons from Evolutionary Processes for Structuring Interventions, and the Need to Go Beyond. <i>Ecosystems</i> , 2021 , 1-15	3.9	3
65	Models in Ecotoxicology: Methodological Aspects 1989 , 213-220		3
64	Epilogue: The Challenge of Sustainability: Lessons from an Evolutionary Perspective 2012 , 431-437		3
63	Robots as models of evolving systems <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2120019119	11.5	3
62	What mathematics can do for sustainability. <i>Bulletin of Mathematical Biology</i> , 2015 , 77, 251-3	2.1	2
61	Implications of localized charge for human influenza A H1N1 hemagglutinin evolution: Insights from deep mutational scans. <i>PLoS Computational Biology</i> , 2020 , 16, e1007892	5	2
60	Reply to Abat et al.: Improved policies necessary to ensure an effective future for antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8111-E8112	11.5	2
59	Games, Groups, Norms, and Societies. Springer Series in Game Theory, 2009, 143-153		2
58	Special issue on eco-informatics: Modeling biological conservation decisions. <i>Environmental Modeling and Assessment</i> , 2005 , 10, 161-162	2	2
57	Analysis of an age-structured fishery model. <i>Journal of Mathematical Biology</i> , 1981 , 12, 263-263	<u>2</u>	2

56	Sunsetting as an Adaptive Strategy. SSRN Electronic Journal,	1	2
55	Ecological and Evolutionary Aspects of Dispersal. Lecture Notes in Biomathematics, 1987, 80-87		2
54	Balance between resource supply and demand determines nutrient limitation of primary productivity in the ocean		2
53	Boat to bowl: resilience through network rewiring of a community-supported fishery amid the COVID-19 pandemic. <i>Environmental Research Letters</i> , 2021 , 16, 034054	6.2	2
52	Partial immunity and SARS-CoV-2 mutations-Response. <i>Science</i> , 2021 , 372, 354-355	33.3	2
51	Biased perceptions explain collective action deadlocks and suggest new mechanisms to prompt cooperation. <i>IScience</i> , 2021 , 24, 102375	6.1	2
50	Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications. <i>Bulletin of Mathematical Biology</i> , 2021 , 83, 73	2.1	2
49	Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	11.5	2
48	Superinfection and the evolution of an initial asymptomatic stage. <i>Royal Society Open Science</i> , 2021 , 8, 202212	3.3	2
47	New Directions in the Mathematics of Infectious Disease. <i>The IMA Volumes in Mathematics and Its Applications</i> , 2002 , 1-5	0.5	2
46	Earth stewardship: Shaping a sustainable future through interacting policy and norm shifts <i>Ambio</i> , 2022 , 1	6.5	2
45	Governing sustainable transformations of urban social-ecological-technological systems. <i>Npj Urban Sustainability</i> , 2022 , 2,		2
44	Generating Controlled, Dynamic Chemical Landscapes to Study Microbial Behavior. <i>Journal of Visualized Experiments</i> , 2020 ,	1.6	1
43	A keystone ecologist: Robert Treat Paine, 1933-2016. <i>Ecology</i> , 2016 , 97, 2905-2909	4.6	1
42	Linear Growth Models for a Single Species: Averaging Spatial Effects via Eigenvalues 2003 , 89-139		1
41	Spatial Heterogeneity in Reaction-Diffusion Models for Two Competing Species 2003 , 295-349		1
40	Ecosystem Dynamics. Handbook of Environmental Economics, 2003, 1, 61-95		1
39	Simon A. Levin's Passion for Ecology. <i>BioScience</i> , 2005 , 55, 828	5.7	1

(2003-2002)

38	Metapopulations, community assembly, and scale invariance in aspect space. <i>Theoretical Population Biology</i> , 2002 , 62, 329-38	1.2	1
37	Uniqueness theorems for the compressible flow equation. <i>Applicable Analysis</i> , 1976 , 5, 207-215	0.8	1
36	On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. <i>PLoS Computational Biology</i> , 2005 , preprint, e159	5	1
35	Active Control and Sustained Oscillations in actSIS Epidemic Dynamics. <i>IFAC-PapersOnLine</i> , 2020 , 53, 807-812	0.7	1
34	Asynchrony between virus diversity and antibody selection limits influenza virus evolution		1
33	Models in Ecotoxicology: Methodological Aspects. <i>Biomathematics</i> , 1989 , 315-321		1
32	Frontiers in Ecosystem Science. <i>Lecture Notes in Biomathematics</i> , 1994 , 381-389		1
31	Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods		1
30	Evolution of an asymptomatic first stage of infection in a heterogeneous population. <i>Journal of the Royal Society Interface</i> , 2021 , 18, 20210175	4.1	1
29	Sunsetting as an adaptive strategy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
28	New Directions in the Mathematics of Infectious Disease. <i>The IMA Volumes in Mathematics and Its Applications</i> , 2002 , 1-5	0.5	1
27	Robert Treat Paine III (1933-2016). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6881-6882	11.5	Ο
26	Transboundary capital and pollution flows and the emergence of regional inequalities. <i>Discrete and Continuous Dynamical Systems - Series B</i> , 2017 , 22, 913-922	1.3	0
25	Asklin Stanford 2000: Are We Consuming Too Much? 2010 , 135-161		0
24	Modeling Atlantic herring fisheries as multiscalar human-natural systems. <i>Fisheries Research</i> , 2021 , 236, 105855	2.3	0
23	A well-timed shift from local to global agreements accelerates climate change mitigation. <i>Nature Communications</i> , 2021 , 12, 2908	17.4	0
22	An ecological perspective on the introduction of genetically engineered organisms into the environment. <i>Journal of Chemical Technology and Biotechnology</i> , 2007 , 43, 257-263	3.5	
21	Density Dependent Single-Species Models 2003 , 141-198		

20 Permanence **2003**, 199-244

19	Beyond Permanence: More Persistence Theory 2003 , 245-294	
18	Nonmonotone Systems 2003 , 351-394	
17	Anticipating environmental disasters. Environment and Development Economics, 1998, 3, 491-537	1.8
16	Stability Matrices and the Solvability of Certain Systems of Linear Inequalities []Linear and Multilinear Algebra, 1974 , 2, 253-255	0.7
15	Positive convolution operators and lipschitz classes. <i>Applicable Analysis</i> , 1976 , 5, 217-226	0.8
14	Nonlinear boundary problems for a quasilinear parabolic equation. <i>Journal of Differential Equations</i> , 1969 , 5, 32-37	2.1
13	On the reduction of a first-order overdetermined system of partial differential equations. <i>Journal of Mathematical Analysis and Applications</i> , 1972 , 38, 467-470	1.1
12	On steady-state intercompartmental flows. <i>Journal of Colloid and Interface Science</i> , 1967 , 23, 572-6	9.3
11	Asklin Washington 1999: Managing Ecosystem Resources 2010 , 115-126	
10	Askl⊉001: Sustainability⊞ Compass Indicators of Genuine Wealth 2010 , 183-192	
9	Recurrent Themes in Mathematical Biology. <i>Lecture Notes in Biomathematics</i> , 1987 , 10-29	
8	Robert May, 1936-2020: A man for all disciplines. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 23199-23201	11.5
7	Analysis of the risk premium in the forward market for salmon. <i>Journal of Commodity Markets</i> , 2021 , 21, 100122	2.4
6	Resolution of Respect Robert M. May (1936\(\bar{2}\)020). <i>Bulletin of the Ecological Society of America</i> , 2021 , 102, e01769	0.7
5	Stepping Up: A U.S. Perspective on the Ten Steps to Responsible Inland Fisheries. <i>Fisheries</i> , 2022 , 47, 68-77	1.1
4	Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells 2020 , 16, e1008051	
3	Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells 2020 , 16, e1008051	

LIST OF PUBLICATIONS

- Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells **2020**, 16, e1008051
- Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells **2020**, 16, e1008051