CiarÃ;n P Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6327207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasensitive and Quantitative Toxin Measurement Correlates With Baseline Severity, Severe Outcomes, and Recurrence Among Hospitalized Patients With <i>Clostridioides difficile</i> Infection. Clinical Infectious Diseases, 2022, 74, 2142-2149.	5.8	16
2	Effectiveness and Safety of Fecal Microbiota Transplantation for Clostridioides Difficile Infection: Results From a 5344-Patient Cohort Study. Gastroenterology, 2022, 163, 319-322.	1.3	18
3	Higher In Vivo Fecal Concentrations of <i>Clostridioides difficile</i> Toxins A and B in Patients With North American Pulsed-Field Gel Electrophoresis Type 1/Ribotype 027 Strain Infection. Clinical Infectious Diseases, 2022, 75, 2019-2022.	5.8	4
4	Analysis of Intestinal Mycobiota of Patients with Clostridioides difficile Infection among a Prospective Inpatient Cohort. Microbiology Spectrum, 2022, 10, .	3.0	9
5	Stool Toxin Concentration Does Not Distinguish <i>Clostridioides difficile</i> Infection from Colonization in Children Less Than 3 Years of Age. Journal of the Pediatric Infectious Diseases Society, 2022, 11, 454-458.	1.3	2
6	Evaluating Responses to Gluten Challenge: A Randomized, Double-Blind, 2-Dose Gluten Challenge Trial. Gastroenterology, 2021, 160, 720-733.e8.	1.3	53
7	Enteric-Release Budesonide May Be Useful in the Management of Non-Responsive Celiac Disease. Digestive Diseases and Sciences, 2021, 66, 1989-1997.	2.3	12
8	Celiac Disease: Fallacies and Facts. American Journal of Gastroenterology, 2021, 116, 1148-1155.	0.4	11
9	Non-responsive celiac disease in children on a gluten free diet. World Journal of Gastroenterology, 2021, 27, 1311-1320.	3.3	8
10	Humoral Immune Response to <i>Clostridioides difficile</i> Toxins A and B in Hospitalized Immunocompromised Patients With <i>C difficile</i> Infection. Open Forum Infectious Diseases, 2021, 8, ofab286.	0.9	3
11	Fecal Mycobiota Combined With Host Immune Factors Distinguish Clostridioides difficile Infection From Asymptomatic Carriage. Gastroenterology, 2021, 160, 2328-2339.e6.	1.3	22
12	TAK-101 Nanoparticles Induce Cluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology, 2021, 161, 66-80.e8.	1.3	88
13	Prevalence of celiac disease in <scp>China</scp> : Metaâ€analysis and serological survey in highâ€risk populations. Journal of Digestive Diseases, 2021, 22, 645-655.	1.5	6
14	Integrating gut microbiome and host immune markers to understand the pathogenesis of <i>Clostridioides difficile</i> infection. Gut Microbes, 2021, 13, 1-18.	9.8	35
15	Host Immune Markers Distinguish <i>Clostridioides difficile</i> Infection From Asymptomatic Carriage and Non– <i>C. difficile</i> Diarrhea. Clinical Infectious Diseases, 2020, 70, 1083-1093.	5.8	28
16	Detection of mixed-strain infections by FACS and ultra-low input genome sequencing. Gut Microbes, 2020, 11, 305-309.	9.8	4
17	Laxative Use Does Not Preclude Diagnosis or Reduce Disease Severity in Clostridiodes difficile Infection. Clinical Infectious Diseases, 2020, 71, 1472-1478.	5.8	17
18	Efficacy of Enteric-Release Oral Budesonide in Treatment of Acute Reactions to Gluten in Patients With Celiac Disease. Clinical Gastroenterology and Hepatology, 2020, 18, 254-256.	4.4	4

CiarÃin P Kelly

#	Article	IF	CITATIONS
19	Effect of Endogenous Clostridioides difficile Toxin Antibodies on Recurrence of C. difficile Infection. Clinical Infectious Diseases, 2020, 71, 81-86.	5.8	17
20	Recent developments in the management of recurrent Clostridioides difficile infection. Anaerobe, 2020, 62, 102108.	2.1	8
21	Natural Clostridioides difficile Toxin Immunization in Colonized Infants. Clinical Infectious Diseases, 2020, 70, 2095-2102.	5.8	27
22	Prevention of recurrent Clostridioides difficile infection: A systematic review of randomized controlled trials. Anaerobe, 2020, 61, 102098.	2.1	42
23	Most Patients With Celiac Disease on Gluten-Free Diets Consume Measurable Amounts of Gluten. Gastroenterology, 2020, 158, 1497-1499.e1.	1.3	65
24	Inter- and Intra-assay Variation in the Diagnostic Performance of Assays for Anti-tissue Transglutaminase in 2 Populations. Clinical Gastroenterology and Hepatology, 2020, 18, 2628-2630.	4.4	8
25	Celiac Disease. Journal of Clinical Gastroenterology, 2020, 54, 8-21.	2.2	57
26	Probiotics for Celiac Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. American Journal of Gastroenterology, 2020, 115, 1584-1595.	0.4	40
27	Clostridioides difficile Toxin A Remodels Membranes and Mediates DNA Entry Into Cells to Activate Toll-Like Receptor 9 Signaling. Gastroenterology, 2020, 159, 2181-2192.e1.	1.3	11
28	Association Between Inflammatory Bowel Diseases and Celiac Disease: A Systematic Review and Meta-Analysis. Gastroenterology, 2020, 159, 884-903.e31.	1.3	54
29	Reply. Gastroenterology, 2020, 159, 1189-1190.	1.3	0
30	645. Absence of Toxemia in <i>Clostridioides difficile</i> infection: Results from Ultrasensitive Toxin Assay of Serum. Open Forum Infectious Diseases, 2020, 7, S381-S382.	0.9	0
31	Comparison of Clostridioides difficile Stool Toxin Concentrations in Adults With Symptomatic Infection and Asymptomatic Carriage Using an Ultrasensitive Quantitative Immunoassay. Clinical Infectious Diseases, 2019, 68, 78-86.	5.8	60
32	Donor Screening for Fecal Microbiota Transplantation. New England Journal of Medicine, 2019, 381, 2070-2072.	27.0	96
33	Novel Nondietary Therapies for Celiac Disease. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 335-345.	4.5	43
34	Diagnostic Accuracy of Point of Care Tests for Diagnosing Celiac Disease. Journal of Clinical Gastroenterology, 2019, 53, 535-542.	2.2	27
35	Nondietary Therapies for Celiac Disease. Gastroenterology Clinics of North America, 2019, 48, 145-163.	2.2	25
36	Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis. Nature Microbiology, 2019, 4, 269-279.	13.3	62

#	Article	IF	CITATIONS
37	Measuring Change In Small Intestinal Histology In Patients With Celiac Disease. American Journal of Gastroenterology, 2018, 113, 339-347.	0.4	74
38	Determination of gluten consumption in celiac disease patients on a gluten-free diet. American Journal of Clinical Nutrition, 2018, 107, 201-207.	4.7	81
39	Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical Infectious Diseases, 2018, 66, e1-e48.	5.8	1,695
40	Global Prevalence of Celiac Disease: Systematic Review andÂMeta-analysis. Clinical Gastroenterology and Hepatology, 2018, 16, 823-836.e2.	4.4	908
41	Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical Infectious Diseases, 2018, 66, 987-994.	5.8	900
42	Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-κB Activity. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	12
43	976. Clostridium difficile Colonization Molecular Epidemiology and Anti-toxin Serological Responses in Healthy Infants: A Prospective Cohort Study. Open Forum Infectious Diseases, 2018, 5, S39-S40.	0.9	Ο
44	Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Frontiers in Immunology, 2018, 9, 2440.	4.8	5
45	Reply to Fabre et al. Clinical Infectious Diseases, 2018, 67, 1958-1959.	5.8	3
46	On and Off: A Dual Role for Cysteine Protease AutoprocessingÂof C difficile Toxin B on Cytotoxicity vsÂProinflammatory Toxin Actions?. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 654-655.	4.5	0
47	TPL2 Is a Key Regulator of Intestinal Inflammation in Clostridium difficile Infection. Infection and Immunity, 2018, 86, .	2.2	10
48	Salivary Gluten Degradation and Oral Microbial Profiles in Healthy Individuals and Celiac Disease Patients. Applied and Environmental Microbiology, 2017, 83, .	3.1	47
49	A Novel Patient-Derived Conceptual Model of the Impact of Celiac Disease in Adults: Implications for Patient-Reported Outcome and Health-Related Quality-of-Life Instrument Development. Value in Health, 2017, 20, 637-643.	0.3	24
50	Bezlotoxumab: anti-toxin B monoclonal antibody to prevent recurrence of <i>Clostridium difficile</i> infection. Expert Review of Gastroenterology and Hepatology, 2017, 11, 611-622.	3.0	11
51	Tests for Serum Transglutaminase and Endomysial Antibodies Do Not Detect Most Patients With Celiac Disease and Persistent Villous Atrophy on Gluten-free Diets: a Meta-analysis. Gastroenterology, 2017, 153, 689-701.e1.	1.3	152
52	A multicenter, retrospective, caseâ€cohort study of the epidemiology and risk factors for <i>Clostridium difficile</i> infection among cord blood transplant recipients. Transplant Infectious Disease, 2017, 19, e12728.	1.7	19
53	Prospective randomized controlled study on the effects of <i>Saccharomyces boulardii</i> CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers. Gut Microbes, 2017, 8, 17-32.	9.8	89
54	Symptoms of Functional Intestinal Disorders Are Common in Patients with Celiac Disease Following Transition to a Gluten-Free Diet. Digestive Diseases and Sciences, 2017, 62, 2449-2454.	2.3	27

#	Article	IF	CITATIONS
55	No Difference Between Latiglutenase and Placebo in ReducingÂVillous Atrophy or Improving Symptoms in PatientsÂWith Symptomatic Celiac Disease. Gastroenterology, 2017, 152, 787-798.e2.	1.3	102
56	Self-reported dietary adherence, disease-specific symptoms, and quality of life are associated with healthcare provider follow-up in celiac disease. BMC Gastroenterology, 2017, 17, 156.	2.0	31
57	Endogenous Serum IgG Antibodies to Clostridium difficile Toxin B Are Associated with Protection against C.Âdifficile Infection Recurrence. Open Forum Infectious Diseases, 2017, 4, S388-S388.	0.9	0
58	The Monoclonal Antitoxin Antibodies (Actoxumab–Bezlotoxumab) Treatment Facilitates Normalization of the Gut Microbiota of Mice with Clostridium difficile Infection. Frontiers in Cellular and Infection Microbiology, 2016, 6, 119.	3.9	26
59	Efficacy of Bezlotoxumab in Patients Receiving Metronidazole, Vancomycin, or Fidaxomicin for Treatment of Clostridium difficile Infection (CDI). Open Forum Infectious Diseases, 2016, 3, .	0.9	2
60	Current Status of Celiac Disease Drug Development. American Journal of Gastroenterology, 2016, 111, 779-786.	0.4	17
61	Serum I-FABP Detects Gluten Responsiveness in Adult Celiac Disease Patients on a Short-Term Gluten Challenge. American Journal of Gastroenterology, 2016, 111, 1014-1022.	0.4	40
62	Probiotic <i>Saccharomyces boulardii</i> CNCM I-745 prevents outbreak-associated <i>Clostridium difficile</i> -associated cecal inflammation in hamsters. American Journal of Physiology - Renal Physiology, 2016, 311, G610-G623.	3.4	26
63	Low testosterone in non-responsive coeliac disease: A case series, case–control study with comparisons to the National Health and Nutrition Examination Survey. Digestive and Liver Disease, 2016, 48, 1155-1161.	0.9	4
64	The association between socioeconomic status and the symptoms at diagnosis of celiac disease: a retrospective cohort study. Therapeutic Advances in Gastroenterology, 2016, 9, 495-502.	3.2	20
65	Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection. MSphere, 2016, 1, .	2.9	20
66	Host Immune Response to Clostridium difficile Infection in Inflammatory Bowel Disease Patients. Inflammatory Bowel Diseases, 2016, 22, 853-861.	1.9	13
67	The burden of clostridium difficile infection: estimates of the incidence of CDI from U.S. Administrative databases. BMC Infectious Diseases, 2016, 16, 177.	2.9	39
68	Immunogenicity and protective efficacy of recombinant <i>Clostridium difficile</i> flagellar protein FliC. Emerging Microbes and Infections, 2016, 5, 1-10.	6.5	44
69	The Potential for Treatment of Potential Celiac Disease. Clinical Gastroenterology and Hepatology, 2016, 14, 694-695.	4.4	6
70	Identification of Medicare Recipients at Highest Risk for Clostridium difficile Infection in the US by Population Attributable Risk Analysis. PLoS ONE, 2016, 11, e0146822.	2.5	31
71	<i>Clostridium difficile</i> Infection Among Veterans Health Administration Patients. Infection Control and Hospital Epidemiology, 2015, 36, 1038-1045.	1.8	16
72	WSES guidelines for management of Clostridium difficile infection in surgical patients. World Journal of Emergency Surgery, 2015, 10, 38.	5.0	78

#	Article	IF	CITATIONS
73	Salivary prolineâ€rich proteins and gluten: Do structural similarities suggest a role in celiac disease?. Proteomics - Clinical Applications, 2015, 9, 953-964.	1.6	6
74	Celiac Disease: Diagnostic Standards and Dilemmas. Diseases (Basel, Switzerland), 2015, 3, 86-101.	2.5	23
75	Larazotide Acetate for Persistent Symptoms of Celiac Disease Despite a Gluten-Free Diet: A Randomized Controlled Trial. Gastroenterology, 2015, 148, 1311-1319.e6.	1.3	204
76	Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease. American Journal of Physiology - Renal Physiology, 2015, 309, G910-G917.	3.4	4
77	Advances in Diagnosis and Management of Celiac Disease. Gastroenterology, 2015, 148, 1175-1186.	1.3	248
78	The Prospect for Vaccines to Prevent Clostridium difficile Infection. Infectious Disease Clinics of North America, 2015, 29, 145-162.	5.1	41
79	Prevalence of Abnormal Liver Function Tests in Celiac Disease and the Effect of a Gluten-Free Diet in the US Population. American Journal of Gastroenterology, 2015, 110, 1216-1222.	0.4	55
80	Differential Immunodetection of Toxin B from Highly Virulent Clostridium difficile BI/NAP-1/027. Journal of Clinical Microbiology, 2015, 53, 1705-1708.	3.9	9
81	Recurrent Clostridium difficile infection: From colonization to cure. Anaerobe, 2015, 34, 59-73.	2.1	79
82	Development and Validation of Digital Enzyme-Linked Immunosorbent Assays for Ultrasensitive Detection and Quantification of Clostridium difficile Toxins in Stool. Journal of Clinical Microbiology, 2015, 53, 3204-3212.	3.9	50
83	The impact of PCR on Clostridium difficile detection and clinical outcomes. Journal of Medical Microbiology, 2015, 64, 1082-1086.	1.8	10
84	Identification of Toxemia in Patients with Clostridium difficile Infection. PLoS ONE, 2015, 10, e0124235.	2.5	32
85	Acid Suppression Therapy Does Not Predispose to Clostridium difficile Infection: The Case of the Potential Bias. PLoS ONE, 2014, 9, e110790.	2.5	43
86	1655Lack of Adherence to SHEA-IDSA Treatment Guidelines for Severe Clostridium difficile Infection is Associated with Increased Mortality. Open Forum Infectious Diseases, 2014, 1, S442-S442.	0.9	0
87	Missing villi? The search for coeliac disease in the Asia–Pacific region. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 204-205.	17.8	2
88	Effects of polysaccharopeptide from <i>Trametes Versicolor</i> and amoxicillin on the gut microbiome of healthy volunteers. Gut Microbes, 2014, 5, 458-467.	9.8	64
89	A Novel Multivalent, Single-Domain Antibody Targeting TcdA and TcdB Prevents Fulminant Clostridium difficile Infection in Mice. Journal of Infectious Diseases, 2014, 210, 964-972.	4.0	84
90	Celiac Disease or Non-Celiac Gluten Sensitivity? An Approach to Clinical Differential Diagnosis. American Journal of Gastroenterology, 2014, 109, 741-746.	0.4	80

#	Article	IF	CITATIONS
91	Response to Aziz et al American Journal of Gastroenterology, 2014, 109, 1499-1500.	0.4	1
92	The Cost of a Loaf of Bread in Symptomless Celiac Disease. Gastroenterology, 2014, 147, 557-559.	1.3	11
93	Patient Perception of Treatment Burden Is High in Celiac Disease Compared With Other Common Conditions. American Journal of Gastroenterology, 2014, 109, 1304-1311.	0.4	169
94	Fidaxomicin Inhibits Clostridium difficile Toxin A-Mediated Enteritis in the Mouse Ileum. Antimicrobial Agents and Chemotherapy, 2014, 58, 4642-4650.	3.2	18
95	Clostridium difficile Carriage and Serum Antitoxin Responses in Children with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 2744-2752.	1.9	57
96	P-225 TLR9 Mediates Host Inflammatory Response in Clostridium difficile Infection. Inflammatory Bowel Diseases, 2013, 19, S114.	1.9	0
97	Mortality in patients with Clostridium difficile infection correlates with host pro-inflammatory and humoral immune responses. Journal of Medical Microbiology, 2013, 62, 1453-1460.	1.8	66
98	Identification of Lactic Acid From Probiotic Yeast as an Anti-Cancer and Anti-Inflammatory Component. Inflammatory Bowel Diseases, 2012, 18, S90-S91.	1.9	0
99	Clostridium Difficile Toxin A-associated DNA Augments the Host Inflammatory Response. Inflammatory Bowel Diseases, 2012, 18, S8.	1.9	0
100	Clostridium Difficile Toxin A-associated DNA Augments the Host Inflammatory Response. Inflammatory Bowel Diseases, 2012, 18, S113.	1.9	1
101	Current strategies for management of initial Clostridium difficile infection. Journal of Hospital Medicine, 2012, 7, S5-S10.	1.4	21
102	Probiotic Yeast Inhibits VEGFR Signaling and Angiogenesis in Colonic Inflammation. Inflammatory Bowel Diseases, 2011, 17, S77.	1.9	0
103	Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine, 2010, 28, 965-969.	3.8	216
104	A 76-Year-Old Man With Recurrent Clostridium difficile–Associated Diarrhea. JAMA - Journal of the American Medical Association, 2009, 301, 954.	7.4	71
105	Human antibody response to surface layer proteins inClostridium difficileinfection. FEMS Immunology and Medical Microbiology, 2004, 41, 237-242.	2.7	83
106	Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet, The, 2001, 357, 189-193.	13.7	735
107	Asymptomatic Carriage of <i>Clostridium difficile</i> and Serum Levels of IgG Antibody against Toxin A. New England Journal of Medicine, 2000, 342, 390-397.	27.0	885
108	Monocytic cell necrosis is mediated by potassium depletion and caspase-like proteases. American Journal of Physiology - Cell Physiology, 1999, 276, C717-C724.	4.6	86

#	Article	IF	CITATIONS
109	Prospects for a Vaccine for Clostridium difficile. BioDrugs, 1998, 10, 173-181.	4.6	25
110	CLOSTRIDIUM DIFFICILEINFECTION. Annual Review of Medicine, 1998, 49, 375-390.	12.2	403
111	IL-8 release and neutrophil activation by <i>Clostridium difficile</i> toxin-exposed human monocytes. American Journal of Physiology - Renal Physiology, 1997, 273, G1333-G1340.	3.4	61
112	Saccharomyces spp , 0, , 51-60.		1
113	Pathogenicity of Clostridium difficile Toxins. , 0, , 503-524.		11