Murray C H Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6327096/publications.pdf

Version: 2024-02-01

33 papers

4,064 citations

279798 23 h-index 34 g-index

35 all docs 35 docs citations

35 times ranked 5886 citing authors

#	Article	IF	CITATIONS
1	Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Frontiers in Immunology, 2020, 11, 613170.	4.8	83
2	Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 648-662.	4.9	20
3	Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nature Communications, 2020, 11 , 307 .	12.8	62
4	Cell surface ILâ€1α trafficking is specifically inhibited by interferonâ€Ĵ³, and associates with the membrane via ILâ€1R2 and GPI anchors. European Journal of Immunology, 2020, 50, 1663-1675.	2.9	11
5	Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 2019, 16, 727-744.	13.7	628
6	Death Is Coming and the Clot Thickens, as Pyroptosis Feeds the Fire. Immunity, 2019, 50, 1339-1341.	14.3	11
7	The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin- $1\hat{l}\pm$ by Thrombin. Immunity, 2019, 50, 1033-1042.e6.	14.3	154
8	ILâ€1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescenceâ€associated secretory phenotype. Aging Cell, 2019, 18, e12946.	6.7	77
9	Senescence utilises inflammatory caspases to drive SASP. Aging, 2019, 11, 3891-3892.	3.1	9
10	Platelet Isolation and Activation Assays. Bio-protocol, 2019, 9, e3405.	0.4	9
11	Killing the old: cell senescence in atherosclerosis. Nature Reviews Cardiology, 2017, 14, 8-9.	13.7	20
12	Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. Circulation, 2015, 132, 1909-1919.	1.6	250
13	Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1α–Dependent Senescence-Associated Secretory Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1963-1974.	2.4	211
14	Interleukin-1α Activity in Necrotic Endothelial Cells Is Controlled by Caspase-1 Cleavage of Interleukin-1 Receptor-2. Journal of Biological Chemistry, 2015, 290, 25188-25196.	3.4	23
15	The CCR5 chemokine receptor mediates vasoconstriction and stimulates intimal hyperplasia in human vessels in vitro. Cardiovascular Research, 2014, 101, 513-521.	3.8	21
16	Response to Letter Regarding Article, "Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans― Circulation, 2014, 129, e408.	1.6	2
17	Intracellular Interleukin-1 Receptor 2 Binding Prevents Cleavage and Activity of Interleukin-1α, Controlling Necrosis-Induced Sterile Inflammation. Immunity, 2013, 38, 285-295.	14.3	172
18	Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans. Circulation, 2013, 128, 702-712.	1.6	218

#	Article	IF	Citations
19	Signalling from dead cells drives inflammation and vessel remodelling. Vascular Pharmacology, 2012, 56, 187-192.	2.1	24
20	Smooth Muscle Cell Apoptosis Promotes Vessel Remodeling and Repair via Activation of Cell Migration, Proliferation, and Collagen Synthesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2402-2409.	2.4	61
21	Bone Marrow–Derived Smooth Muscle–Like Cells Are Infrequent in Advanced Primary Atherosclerotic Plaques but Promote Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1291-1299.	2.4	58
22	Leukocyte Telomere Length Is Associated With High-Risk Plaques on Virtual Histology Intravascular Ultrasound and Increased Proinflammatory Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2157-2164.	2.4	68
23	Cell Death, Damage-Associated Molecular Patterns, and Sterile Inflammation in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2781-2786.	2.4	140
24	Vascular Smooth Muscle Cell Apoptosis Induces Interleukin-1–Directed Inflammation. Circulation Research, 2010, 106, 363-372.	4.5	205
25	Cause or Consequence. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 153-155.	2.4	23
26	Chronic Apoptosis of Vascular Smooth Muscle Cells Accelerates Atherosclerosis and Promotes Calcification and Medial Degeneration. Circulation Research, 2008, 102, 1529-1538.	4.5	322
27	Cell death in the cardiovascular system. Heart, 2007, 93, 659-664.	2.9	55
28	Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nature Medicine, 2006, 12, 1075-1080.	30.7	584
29	Defining the Role of Vascular Smooth Muscle Cell Apoptosis in Atherosclerosis. Cell Cycle, 2006, 5, 2329-2331.	2.6	36
30	The Emerging Role of Vascular Smooth Muscle Cell Apoptosis in Atherosclerosis and Plaque Stability. American Journal of Nephrology, 2006, 26, 531-535.	3.1	98
31	Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. Journal of Cell Biology, 2003, 160, 577-587.	5.2	136
32	Cigarette Smoke Prevents Apoptosis through Inhibition of Caspase Activation and Induces Necrosis. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 562-570.	2.9	110
33	Constitutive Death of Platelets Leading to Scavenger Receptor-mediated Phagocytosis. Journal of Biological Chemistry, 2000, 275, 5987-5996.	3.4	153