Bai-Li Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6326076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Responses of rhizosphere soil properties, enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China. Soil and Tillage Research, 2019, 195, 104355.	2.6	139
2	The genome of broomcorn millet. Nature Communications, 2019, 10, 436.	5.8	130
3	Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch. Food Chemistry, 2016, 190, 552-558.	4.2	87

 $_{4}$ Comparison of physicochemical properties and cooking edibility of waxy and non-waxy proso millet () Tj ETQq0 0 0 $_{4.2}^{0}$ Coverlock 10 Tf

•			00
5	How Does the Waterlogging Regime Affect Crop Yield? A Global Meta-Analysis. Frontiers in Plant Science, 2021, 12, 634898.	1.7	71
6	Functional and physicochemical properties of flours and starches from different tuber crops. International Journal of Biological Macromolecules, 2020, 148, 324-332.	3.6	59
7	Analysis of Flavonoid Metabolites in Buckwheat Leaves Using UPLC-ESI-MS/MS. Molecules, 2019, 24, 1310.	1.7	55
8	Exogenous Melatonin Modulates the Physiological and Biochemical Mechanisms of Drought Tolerance in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn). Molecules, 2020, 25, 2828.	1.7	55
9	Isolation and characterization of starch from light yellow, orange, and purple sweet potatoes. International Journal of Biological Macromolecules, 2020, 160, 660-668.	3.6	54
10	Comparative metabolomics reveals differences in flavonoid metabolites among different coloured buckwheat flowers. Journal of Food Composition and Analysis, 2020, 85, 103335.	1.9	48
11	Starch physicochemical properties of waxy proso millet (<i>Panicum Miliaceum</i> L.). Starch/Staerke, 2014, 66, 1005-1012.	1.1	44
12	Comparison of structural and physicochemical properties of starches from five coarse grains. Food Chemistry, 2019, 288, 283-290.	4.2	37
13	Physicochemical Properties of Starches in Proso (Non-Waxy and Waxy) and Foxtail Millets (Non-Waxy) Tj ETQq1 I	l 0.78431 1.7	4 rgBT /O\ 27
14	Comparative study on the effects of buckwheat by roasting: Antioxidant properties, nutrients, pasting, and thermal properties. Journal of Cereal Science, 2020, 95, 103041.	1.8	26
15	Effects of germination on the physicochemical, nutritional and in vitro digestion characteristics of flours from waxy and nonwaxy proso millet, common buckwheat and pea. Innovative Food Science and Emerging Technologies, 2021, 67, 102586.	2.7	25
16	Morphological diversity and correlation analysis of phenotypes and quality traits of proso millet (Panicum miliaceum L.) core collections. Journal of Integrative Agriculture, 2019, 18, 958-969.	1.7	23
17	Improving the Functionality of Proso Millet Protein and Its Potential as a Functional Food Ingredient by Applying Nitrogen Fertiliser. Foods, 2021, 10, 1332.	1.9	19
18	Soil properties, bacterial and fungal community compositions and the key factors after 5-year continuous monocropping of three minor crops. PLoS ONE, 2020, 15, e0237164.	1.1	16

Bai-Li Feng

#	Article	IF	CITATIONS
19	Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages. Agriculture (Switzerland), 2021, 11, 452.	1.4	11
20	Proso millet (Panicum miliaceum L.): A potential crop to meet demand scenario for sustainable saline agriculture. Journal of Environmental Management, 2021, 296, 113216.	3.8	11
21	Rhizosphere bacterial community structure of three minor grain crops: A caseâ€study from paired field sites in northern China. Land Degradation and Development, 2022, 33, 104-116.	1.8	9
22	Cleaner production of proso millet (Panicum miliaceum L.) in salt-stressed environment using re-watering: From leaf structural alleviations to multi-omics responses. Journal of Cleaner Production, 2022, 334, 130205.	4.6	9
23	Genetic diversity and virulence variation of Sporisorium destruens isolates and evaluation of broomcorn millet for resistance to head smut. Euphytica, 2016, 211, 59-70.	0.6	8
24	Changes in Morphological and Physicochemical Properties of Waxy and Non-waxy Proso Millets during Cooking Process. Foods, 2019, 8, 583.	1.9	8
25	Genome-Wide Identification of DNA Binding with One Finger (Dof) Gene Family in Tartary Buckwheat (Fagopyrum tataricum) and Analysis of Its Expression Pattern after Exogenous Hormone Stimulation. Biology, 2022, 11, 173.	1.3	7
26	New Type of Food Processing Material: The Crystal Structure and Functional Properties of Waxy and Non-Waxy Proso Millet Resistant Starches. Molecules, 2021, 26, 4283.	1.7	6
27	Endogenous bioactive gibberellin/abscisic acids and enzyme activity synergistically promote the phytoremediation of alkaline soil by broomcorn millet (Panicum miliaceum L.). Journal of Environmental Management, 2022, 305, 114362.	3.8	6
28	Genome-wide identification and expression analysis of the plant-specific PLATZ gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Plant Biology, 2022, 22, 160.	1.6	6
29	Legume Integration Augments the Forage Productivity and Quality in Maize-Based System in the Loess Plateau Region. Sustainability, 2022, 14, 6022.	1.6	6
30	Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model. Plants, 2022, 11, 1574.	1.6	6
31	Association between the yield and the main agronomic traits of Tartary buckwheat evaluated using the random forest model. Crop Science, 2020, 60, 2394-2407.	0.8	5
32	Identifying the primary meteorological factors affecting the growth and development of <scp>T</scp> artary buckwheat and a comprehensive landrace evaluation using a multiâ€environment phenotypic investigation. Journal of the Science of Food and Agriculture, 2021, 101, 6104-6116.	1.7	5
33	Unravelling the distinctive growth mechanism of proso millet (<i>Panicum miliaceum</i> L.) under salt stress: From rootâ€toâ€leaf adaptations to molecular response. GCB Bioenergy, 2022, 14, 192-214.	2.5	4
34	Cultivar sensitivity of broomcorn millet (Panicum miliaceum L.) to nitrogen availability is associated with differences in photosynthetic physiology and nitrogen uptake. Plant Physiology and Biochemistry, 2022, 182, 90-103.	2.8	4
35	Identification of Differentially Expressed Genes Involved in the Molecular Mechanism of Pericarp Elongation and Differences in Sucrose and Starch Accumulation between Vegetable and Grain Pea (Pisum sativum L.). International Journal of Molecular Sciences, 2019, 20, 6135.	1.8	3
36	The Life Cycle and Ultrastructure of the Host Response of the Smut Pathogen <i>Anthracocystis destruens</i> on Broomcorn Millet. Phytopathology, 2022, 112, 996-1002.	1.1	1

#	Article	IF	CITATIONS
37	Differentiation of fatty acid, aminno acid, and volatile composition in waxy and non-waxy proso millet. Food Science and Technology, 0, 42, .	0.8	0