
Jing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6325899/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Amphiphilic Eggâ€Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns. Angewandte Chemie - International Edition, 2012, 51, 9297-9301.	13.8	604
2	Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Advanced Functional Materials, 2020, 30, 2000712.	14.9	336
3	Versatile Bifunctional Magneticâ€Fluorescent Responsive Janus Supraballs Towards the Flexible Bead Display. Advanced Materials, 2011, 23, 2915-2919.	21.0	335
4	Noble Metalâ€Free Nanocatalysts with Vacancies for Electrochemical Water Splitting. Small, 2018, 14, e1703323.	10.0	250
5	Structural design of TiO ₂ -based photocatalyst for H ₂ production and degradation applications. Catalysis Science and Technology, 2015, 5, 4703-4726.	4.1	223
6	Highly Branched Metal Alloy Networks with Superior Activities for the Methanol Oxidation Reaction. Angewandte Chemie - International Edition, 2017, 56, 4488-4493.	13.8	210
7	Hair-derived carbon dots toward versatile multidimensional fluorescent materials. Journal of Materials Chemistry C, 2014, 2, 6477-6483.	5.5	139
8	Bidentate-complex-derived TiO2/carbon dot photocatalysts: in situ synthesis, versatile heterostructures, and enhanced H2 evolution. Journal of Materials Chemistry A, 2014, 2, 5703.	10.3	120
9	In situ chemical etching of tunable 3D Ni ₃ S ₂ superstructures for bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 13916-13922.	10.3	117
10	Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H ₂ production. RSC Advances, 2014, 4, 44117-44123.	3.6	89
11	Plasma-engineered NiO nanosheets with enriched oxygen vacancies for enhanced electrocatalytic nitrogen fixation. Inorganic Chemistry Frontiers, 2020, 7, 455-463.	6.0	79
12	Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H ₂ evolution. Nanoscale, 2014, 6, 9673.	5.6	71
13	Electrodeposited cobalt phosphide superstructures for solar-driven thermoelectrocatalytic overall water splitting. Journal of Materials Chemistry A, 2017, 5, 16580-16584.	10.3	54
14	Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy, 2015, 18, 273-282.	16.0	53
15	Fabrication of carbon quantum dots/TiO2/Fe2O3 composites and enhancement of photocatalytic activity under visible light. Chemical Physics Letters, 2019, 730, 391-398.	2.6	53
16	Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A. Chemosphere, 2021, 263, 128279.	8.2	53
17	Quantum-dot-embedded ionomer-derived films with ordered honeycomb structures via breath figures. Chemical Communications, 2010, 46, 7376.	4.1	48
18	Topotactic Consolidation of Monocrystalline CoZn Hydroxides for Advanced Oxygen Evolution Electrodes. Angewandte Chemie - International Edition, 2016, 55, 10326-10330.	13.8	43

Jing Wang

#	Article	IF	CITATIONS
19	Composite Si-O-metal network catalysts with uneven electron distribution: Enhanced activity and electron transfer for catalytic ozonation of carbamazepine. Applied Catalysis B: Environmental, 2020, 263, 118311.	20.2	43
20	Fabrication of phosphorus nanostructures/TiO2 composite photocatalyst with enhancing photodegradation and hydrogen production from water under visible light. Journal of Colloid and Interface Science, 2018, 516, 215-223.	9.4	42
21	Interfacial engineering of 2D/2D MXene heterostructures: face-to-face contact for augmented photodegradation of amoxicillin. Chemical Engineering Journal, 2021, 426, 131246.	12.7	42
22	Oxygen-vacancy-embedded 2D/2D NiFe-LDH/MXene Schottky heterojunction for boosted photodegradation of norfloxacin. Applied Surface Science, 2022, 572, 151432.	6.1	37
23	A fluorescent nanoprobe for 4-ethylguaiacol based on the use of a molecularly imprinted polymer doped with a covalent organic framework grafted onto carbon nanodots. Mikrochimica Acta, 2019, 186, 182.	5.0	35
24	Multifunctional ionomer-derived honeycomb-patterned architectures and their performance in light enhancement of light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 4089.	6.7	32
25	Topotactic Consolidation of Monocrystalline CoZn Hydroxides for Advanced Oxygen Evolution Electrodes. Angewandte Chemie, 2016, 128, 10482-10486.	2.0	30
26	Efficient catalytic ozonation of diclofenac by three-dimensional iron (Fe)-doped SBA-16 mesoporous structures. Journal of Colloid and Interface Science, 2020, 578, 461-470.	9.4	25
27	Efficient removal of 2,2′,4,4′-tetrabromodiphenyl ether with a Z-scheme Cu2O-(rGO-TiO2) photocatalyst under sunlight irradiation. Chemosphere, 2020, 254, 126806.	8.2	25
28	Facile one-step electrodeposition of two-dimensional nickel-iron bimetallic sulfides for efficient electrocatalytic oxygen evolution. Journal of Alloys and Compounds, 2022, 894, 162533.	5.5	25
29	Highly efficient degradation of perfluorooctanoic acid: An integrated photo-electrocatalytic ozonation and mechanism study. Chemical Engineering Journal, 2020, 391, 123533.	12.7	24
30	The mechanism of Metal-H2O2 complex immobilized on MCM-48 and enhanced electron transfer for effective peroxone ozonation of sulfamethazine. Applied Catalysis B: Environmental, 2021, 280, 119453.	20.2	24
31	Efficient catalytic ozonation of bisphenol A by three-dimensional mesoporous CeOx-loaded SBA-16. Chemosphere, 2021, 278, 130412.	8.2	21
32	Macromonomer-induced CdTe quantum dots toward multicolor fluorescent patterns and white LEDs. RSC Advances, 2012, 2, 9005.	3.6	20
33	Rational Integration of Inbuilt Aperture with Mesoporous Framework in Unusual Asymmetrical Yolk–Shell Structures for Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2016, 8, 32901-32909.	8.0	20
34	Vacancy engineering of group VI anions in NiCo2A4 (AÂ= O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion. Electrochimica Acta, 2020, 333, 135515.	5.2	15
35	Quantum-dot-embedded polymeric fiber films with photoluminescence and superhydrophobicity. Materials Letters, 2013, 99, 54-56.	2.6	13
36	Enhancing catalytic ozonation activity of MCM-41 via one-step incorporating fluorine and iron: The interfacial reaction induced by hydrophobic sites and Lewis acid sites. Chemosphere, 2022, 292, 133544.	8.2	13

Jing Wang

#	Article	IF	CITATIONS
37	Corrosion-Mediated Self-Assembly (CMSA): Direct Writing Towards Sculpturing of 3D Tunable Functional Nanostructures. Angewandte Chemie - International Edition, 2015, 54, 15804-15808.	13.8	12
38	Shedding Light on Luminescent Janus Nanoparticles: From Synthesis to Photoluminescence and Applications. Small, 2022, 18, e2200020.	10.0	11
39	Natureâ€Inspired Design of Artificial Solarâ€toâ€Fuel Conversion Systems based on Copper Phosphate Microflowers. ChemSusChem, 2016, 9, 1575-1578.	6.8	10
40	Manganese Copper Sulfide Nanocomposites: Structure Tailoring and Photo/Electrocatalytic Hydrogen Generation. ChemCatChem, 2017, 9, 4148-4154.	3.7	10
41	Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts, 2021, 11, 1394.	3.5	8
42	Corrosionâ€Mediated Selfâ€Assembly (CMSA): Direct Writing Towards Sculpturing of 3D Tunable Functional Nanostructures. Angewandte Chemie, 2015, 127, 16030-16034.	2.0	5
43	Constructing honeycomb architectures from polymer carbon dot composites for luminous efficacy enhancement of LEDs. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	2
44	Inorganic-organic Hybrid Membranes for Photocatalytic Hydrogen Generation and Volatile Organic Compound Degradation. Procedia Engineering, 2017, 215, 202-210.	1.2	1