
David Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6324112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chemistry, 2011, 3, 720-724.	13.6	469
2	Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nature Chemistry, 2014, 6, 527-533.	13.6	314
3	Hierarchical Self-Assembly of a Copolymer-Stabilized Coacervate Protocell. Journal of the American Chemical Society, 2017, 139, 17309-17312.	13.7	175
4	Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano, 2018, 12, 4877-4885.	14.6	168
5	Formation of Well-Defined, Functional Nanotubes via Osmotically Induced Shape Transformation of Biodegradable Polymersomes. Journal of the American Chemical Society, 2016, 138, 9353-9356.	13.7	105
6	Mimicking Cellular Compartmentalization in a Hierarchical Protocell through Spontaneous Spatial Organization. ACS Central Science, 2019, 5, 1360-1365.	11.3	101
7	Tuning the membrane permeability of polymersome nanoreactors developed by aqueous emulsion polymerization-induced self-assembly. Nanoscale, 2019, 11, 12643-12654.	5.6	91
8	Polymer/nucleotide droplets as bio-inspired functional micro-compartments. Soft Matter, 2012, 8, 6004.	2.7	89
9	Spontaneous Structuration in Coacervateâ€Based Protocells by Polyoxometalateâ€Mediated Membrane Assembly. Small, 2014, 10, 1830-1840.	10.0	82
10	Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium. Biomacromolecules, 2021, 22, 126-133.	5.4	80
11	Biodegradable Synthetic Organelles Demonstrate ROS Shielding in Human-Complex-I-Deficient Fibroblasts. ACS Central Science, 2018, 4, 917-928.	11.3	63
12	Hybrid Biodegradable Nanomotors through Compartmentalized Synthesis. Nano Letters, 2020, 20, 4472-4480.	9.1	56
13	Controlling the morphology of copolymeric vectors for next generation nanomedicine. Journal of Controlled Release, 2017, 259, 29-39.	9.9	39
14	Morphology Under Control: Engineering Biodegradable Stomatocytes. ACS Macro Letters, 2017, 6, 1217-1222.	4.8	39
15	pH-Induced Transformation of Biodegradable Multilamellar Nanovectors for Enhanced Tumor Penetration. ACS Macro Letters, 2018, 7, 1394-1399.	4.8	23
16	Development of Morphologically Discrete PEG–PDLLA Nanotubes for Precision Nanomedicine. Biomacromolecules, 2019, 20, 177-183.	5.4	23
17	Biodegradable, Drugâ€Loaded Nanovectors via Direct Hydration as a New Platform for Cancer Therapeutics. Small, 2018, 14, e1703774.	10.0	19
18	Synthetic Viruslike Particles and Hybrid Constructs Based on Lipopeptide Selfâ€Assembly. Small, 2010, 6, 1191-1196.	10.0	17

DAVID WILLIAMS

#	Article	IF	CITATIONS
19	Molecular Programming of Biodegradable Nanoworms via Ionically Induced Morphology Switch toward Asymmetric Therapeutic Carriers. Small, 2019, 15, 1901849.	10.0	17
20	Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility. ACS Nano, 2021, 15, 18270-18278.	14.6	17
21	Simple Photosystem II Water Oxidation Centre Analogues in Visible Light Oxygen and H ⁺ Generation. Small, 2013, 9, 61-66.	10.0	12
22	Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proofâ€ofâ€Concept Studies. Advanced Therapeutics, 2018, 1, 1800068.	3.2	12
23	Wormlike Nanovector with Enhanced Drug Loading Using Blends of Biodegradable Block Copolymers. Biomacromolecules, 2020, 21, 2199-2207.	5.4	11
24	Biopolymeric Coacervate Microvectors for the Delivery of Functional Proteins to Cells. Advanced Biology, 2020, 4, e2000101.	3.0	8