
Gabriela M Kuster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6324008/publications.pdf Version: 2024-02-01

CARDIELA M KLISTED

#	Article	IF	CITATIONS
1	NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction. Cardiovascular Research, 2022, 118, 2973-2984.	3.8	10
2	Fms-like tyrosine kinase 3 is a regulator of the cardiac side population in mice. Life Science Alliance, 2022, 5, e202101112.	2.8	2
3	Clinical utility of inflammatory biomarkers in COVID-19 in direct comparison to other respiratory infections—A prospective cohort study. PLoS ONE, 2022, 17, e0269005.	2.5	18
4	Serum Neurofilament Light Chain Levels in the Intensive Care Unit: Comparison between Severely III Patients with and without Coronavirus Disease 2019. Annals of Neurology, 2021, 89, 610-616.	5.3	68
5	Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients. Cells, 2021, 10, 534.	4.1	5
6	Prevalence and outcome of dysnatremia in patients with COVID-19 compared to controls. European Journal of Endocrinology, 2021, 184, 409-418.	3.7	37
7	Comparison of Acute Kidney Injury in Patients with COVID-19 and Other Respiratory Infections: A Prospective Cohort Study. Journal of Clinical Medicine, 2021, 10, 2288.	2.4	4
8	Nonamyloidotic light chain deposition cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2021, 22, e160.	1.2	1
9	Direct Comparison of Clinical Characteristics, Outcomes, and Risk Prediction in Patients with COVID-19 and Controls—A Prospective Cohort Study. Journal of Clinical Medicine, 2021, 10, 2672.	2.4	4
10	A â€~decoy' function of the 3'-untranslated region adds a new dimension to gene regulation in cardiac disease. European Heart Journal, 2021, 42, 3800-3802.	2.2	2
11	The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. Swiss Medical Weekly, 2021, 151, w30087.	1.6	13
12	Immunoreactivity of the SARS-CoV-2 entry proteins ACE-2 and TMPRSS-2 in murine models of hormonal manipulation, ageing, and cardiac injury. Scientific Reports, 2021, 11, 23993.	3.3	5
13	Renin–angiotensin system and SARS-CoV-2 infection: there is a before and after. European Heart Journal, 2020, 41, 2128-2129.	2.2	4
14	SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19?. European Heart Journal, 2020, 41, 1801-1803.	2.2	343
15	Regulatory RNAs in Heart Failure. Circulation, 2020, 141, 313-328.	1.6	133
16	Switching antihypertensive therapy in times of COVID-19: why we should wait for the evidence. European Heart Journal, 2020, 41, 1857-1857.	2.2	5
17	Induction of Endothelial Differentiation in Cardiac Progenitor Cells Under Low Serum Conditions. Journal of Visualized Experiments, 2019, , .	0.3	1
18	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	2.6	14

GABRIELA M KUSTER

#	Article	IF	CITATIONS
19	Chronic heart failure: advances in pharmacological treatment and future perspectives. Swiss Medical Weekly, 2019, 149, w20036.	1.6	7
20	Poloâ€Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yesâ€Associated Protein 1 in Cardiac Progenitor Cells. Journal of the American Heart Association, 2017, 6, .	3.7	12
21	Noninvasive Contrast-Enhanced Ultrasound Molecular Imaging Detects Myocardial Inflammatory Response in Autoimmune Myocarditis. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	19
22	Fortune Favors the Prepared. Circulation Research, 2016, 118, 908-910.	4.5	0
23	Regenerative therapy for cardiovascular disease. Translational Research, 2014, 163, 307-320.	5.0	41
24	FLT3 Activation Improves Post-Myocardial Infarction Remodeling Involving a Cytoprotective Effect on Cardiomyocytes. Journal of the American College of Cardiology, 2014, 63, 1011-1019.	2.8	28
25	Cardiovascular Management of Cancer Patients With Chemotherapy-Associated Left Ventricular Systolic Dysfunction in Real-World Clinical Practice. Journal of Cardiac Failure, 2013, 19, 629-634.	1.7	39
26	Molecular Imaging Reveals Rapid Reduction of Endothelial Activation in Early Atherosclerosis With Apocynin Independent of Antioxidative Properties. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2187-2192.	2.4	37
27	Hydrogen Peroxide–Mediated SERCA Cysteine 674 Oxidation Contributes to Impaired Cardiac Myocyte Relaxation in Senescent Mouse Heart. Journal of the American Heart Association, 2013, 2, e000184.	3.7	91
28	Noninvasive Ultrasound Molecular Imaging of the Effect of Statins on Endothelial Inflammatory Phenotype in Early Atherosclerosis. PLoS ONE, 2013, 8, e58761.	2.5	35
29	NOX2-derived reactive oxygen species are crucial for CD29-induced pro-survival signalling in cardiomyocytes. Cardiovascular Research, 2012, 93, 454-462.	3.8	20
30	Fms-Like Tyrosine Kinase 3 Protects Cardiomyocytes Against Oxidative Stress-Induced Apoptosis. Journal of Cardiac Failure, 2011, 17, S27.	1.7	0
31	Oxidative Modification of the Extracellular Domain Decreases \hat{I}^2 1-Integrin Avidity and Interferes with Outside-In Signaling and Cell Survival. Journal of Cardiac Failure, 2011, 17, S34.	1.7	Ο
32	β1-Integrin is up-regulated via Rac1-dependent reactive oxygen species as part of the hypertrophic cardiomyocyte response. Free Radical Biology and Medicine, 2011, 51, 609-618.	2.9	24
33	Redox-mediated reciprocal regulation of SERCA and Na+–Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radical Biology and Medicine, 2010, 48, 1182-1187.	2.9	113
34	Reactive Oxygen/Nitrogen Species and the Myocardial Cell Homeostasis: An Ambiguous Relationship. Antioxidants and Redox Signaling, 2010, 13, 1899-1910.	5.4	15
35	EMMPRIN mediates β-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2008, 44, 210-217.	1.9	48
36	Role of Reversible, Thioredoxin-Sensitive Oxidative Protein Modifications in Cardiac Myocytes. Antioxidants and Redox Signaling, 2006, 8, 2153-2159.	5.4	37

GABRIELA M KUSTER

#	Article	IF	CITATIONS
37	α-Adrenergic Receptor–Stimulated Hypertrophy in Adult Rat Ventricular Myocytes Is Mediated via Thioredoxin-1–Sensitive Oxidative Modification of Thiols on Ras. Circulation, 2005, 111, 1192-1198.	1.6	115
38	Mineralocorticoid Receptor Inhibition Ameliorates the Transition to Myocardial Failure and Decreases Oxidative Stress and Inflammation in Mice With Chronic Pressure Overload. Circulation, 2005, 111, 420-427.	1.6	178
39	Aldosterone Stimulates Matrix Metalloproteinases and Reactive Oxygen Species in Adult Rat Ventricular Cardiomyocytes. Hypertension, 2005, 46, 555-561.	2.7	133
40	Risks and benefits of optimised medical and revascularisation therapy in elderly patients with angina ? on-treatment analysis of the TIME trial. European Heart Journal, 2004, 25, 1036-1042.	2.2	33
41	Cost-effectiveness of invasive versus medical management of elderly patients with chronic symptomatic coronary artery disease. Findings of the randomized trial of invasive versus medical therapy in elderly patients with chronic angina (TIME). European Heart Journal, 2004, 25, 2195-2203.	2.2	47
42	Anthracyclines Induce Calpain-dependent Titin Proteolysis and Necrosis in Cardiomyocytes. Journal of Biological Chemistry, 2004, 279, 8290-8299.	3.4	241
43	Care of Elderly Patients With Chronic Symptomatic Coronary Artery Disease: Is It TIME to Be More Offensive?. Progress in Cardiovascular Nursing, 2004, 19, 85-89.	0.4	0
44	Comparison of presentation, perception, and six-month outcome between women and men ≥75 years of age with angina pectoris. American Journal of Cardiology, 2003, 91, 436-439.	1.6	15
45	ROS-dependent alpha-adrenergic receptor-stimulated hypertrophy in adult rat cardiac myocytes is mediated by H2O2 or a derivative. Journal of Cardiac Failure, 2003, 9, S42.	1.7	1
46	The prevalence of anemia in chronic heart failure. International Journal of Cardiology, 2002, 86, 115-121.	1.7	104
47	High density-lipoprotein subfractions of patients using cardio-selective beta-blockers. Cardiovascular Drugs and Therapy, 2002, 16, 127-131.	2.6	2
48	B-type natriuretic peptide for diagnosis and treatment of congestive heart failure. Swiss Medical Weekly, 2002, 132, 623-8.	1.6	13
49	RELATION OF CYCLOSPORINE BLOOD LEVELS TO ADVERSE EFFECTS ON LIPOPROTEINS. Transplantation, 1994, 57, 1479-1483.	1.0	81