Martin C J Maiden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/632331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3140-3145.	3.3	3,333
2	BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 2010, 11, 595.	1.2	2,074
3	Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular Microbiology, 2006, 60, 1136-1151.	1.2	1,806
4	Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Research, 2018, 3, 124.	0.9	1,710
5	Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1043-1047.	0.8	971
6	Multilocus Sequence Typing of Bacteria. Annual Review of Microbiology, 2006, 60, 561-588.	2.9	798
7	Multilocus Sequence Typing System for Campylobacter jejuni. Journal of Clinical Microbiology, 2001, 39, 14-23.	1.8	771
8	Multilocus Sequence Typing System for the Endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 2006, 72, 7098-7110.	1.4	730
9	MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews Microbiology, 2013, 11, 728-736.	13.6	590
10	Multi-locus sequence typing: a tool for global epidemiology. Trends in Microbiology, 2003, 11, 479-487.	3.5	574
11	Candida orthopsilosis and Candida metapsilosis spp. nov. To Replace Candida parapsilosis Groups II and III. Journal of Clinical Microbiology, 2005, 43, 284-292.	1.8	520
12	Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (United Kingdom), 2012, 158, 1005-1015.	0.7	497
13	mlstdbNet - distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics, 2004, 5, 86.	1.2	459
14	Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8449-8454.	3.3	457
15	Mammalian and bacterial sugar transport proteins are homologous. Nature, 1987, 325, 641-643.	13.7	417
16	Impact of Meningococcal Serogroup C Conjugate Vaccines on Carriage and Herd Immunity. Journal of Infectious Diseases, 2008, 197, 737-743.	1.9	395
17	Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet, The, 2002, 359, 1829-1830.	6.3	386
18	<i>Campylobacter</i> Genotyping to Determine the Source of Human Infection. Clinical Infectious Diseases, 2009, 48, 1072-1078.	2.9	358

Martin C J Maiden

#	Article	IF	CITATIONS
19	Population Structure and Evolution of the Bacillus cereus Group. Journal of Bacteriology, 2004, 186, 7959-7970.	1.0	337
20	Impact of recombination on bacterial evolution. Trends in Microbiology, 2010, 18, 315-322.	3.5	331
21	Meningococcal carriage and disease—Population biology and evolution. Vaccine, 2009, 27, B64-B70.	1.7	302
22	The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Molecular Biology and Evolution, 1999, 16, 1496-1502.	3.5	290
23	Molecular Phylogenetics of Candida albicans. Eukaryotic Cell, 2007, 6, 1041-1052.	3.4	285
24	The maintenance of strain structure in populations of recombining infectious agents. Nature Medicine, 1996, 2, 437-442.	15.2	276
25	Genome-wide association study identifies vitamin B ₅ biosynthesis as a host specificity factor in <i>Campylobacter</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11923-11927.	3.3	267
26	Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. The Lancet Digital Health, 2021, 3, e360-e370.	5.9	260
27	Description and Nomenclature of <i>Neisseria meningitidis</i> Capsule Locus. Emerging Infectious Diseases, 2013, 19, 566-573.	2.0	259
28	Horizontally Transmitted Symbionts and Host Colonization of Ecological Niches. Current Biology, 2013, 23, 1713-1717.	1.8	248
29	Capsular Serotype–Specific Attack Rates and Duration of Carriage ofStreptococcuspneumoniaein a Population of Children. Journal of Infectious Diseases, 2006, 194, 682-688.	1.9	247
30	Effect of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial. Lancet, The, 2014, 384, 2123-2131.	6.3	247
31	Convergence of <i>Campylobacter</i> Species: Implications for Bacterial Evolution. Science, 2008, 320, 237-239.	6.0	231
32	Effect of a serogroup A meningococcal conjugate vaccine (PsA–∏) on serogroup A meningococcal meningitis and carriage in Chad: a community study. Lancet, The, 2014, 383, 40-47.	6.3	230
33	Distribution of Serogroups and Genotypes among Disease-Associated and Carried Isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. Journal of Clinical Microbiology, 2004, 42, 5146-5153.	1.8	222
34	Collaborative Consensus for Optimized Multilocus Sequence Typing of Candida albicans. Journal of Clinical Microbiology, 2003, 41, 5265-5266.	1.8	216
35	Molecular Characterization of <i>Campylobacter jejuni</i> Clones: A Basis for Epidemiologic Investigation. Emerging Infectious Diseases, 2002, 8, 949-955.	2.0	211
36	The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Molecular Biology and Evolution, 1999, 16, 741-749.	3.5	210

#	Article	IF	CITATIONS
37	Social Behavior and Meningococcal Carriage in British Teenagers. Emerging Infectious Diseases, 2006, 12, 950-957.	2.0	209
38	Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens. PLoS Pathogens, 2009, 5, e1000346.	2.1	197
39	Population Structure and Properties of Candida albicans , as Determined by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2005, 43, 5601-5613.	1.8	194
40	Multilocus Sequence Typing Scheme That Provides Both Species and Strain Differentiation for the Burkholderia cepacia Complex. Journal of Clinical Microbiology, 2005, 43, 4665-4673.	1.8	193
41	Molecular Characterization of <i>Campylobacter jejuni</i> Clones: A Basis for Epidemiologic Investigation. Emerging Infectious Diseases, 2002, 8, 949-955.	2.0	192
42	Silent Nucleotide Polymorphisms and a Phylogeny for <i>Mycobacterium tuberculosis</i> . Emerging Infectious Diseases, 2004, 10, 1568-1577.	2.0	189
43	Meningococcal vaccines and herd immunity: lessons learned from serogroup C conjugate vaccination programs. Expert Review of Vaccines, 2009, 8, 851-861.	2.0	185
44	Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. Journal of Infection, 2015, 71, 544-552.	1.7	185
45	Sequence Typing and Comparison of Population Biology of Campylobacter coli and Campylobacter jejuni. Journal of Clinical Microbiology, 2005, 43, 340-347.	1.8	183
46	Bacterial population genetics, evolution and epidemiology. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 701-710.	1.8	182
47	Distribution of Surface Protein Variants among Hyperinvasive Meningococci: Implications for Vaccine Design. Infection and Immunity, 2004, 72, 5955-5962.	1.0	180
48	Genetic Analysis of Meningococci Carried by Children and Young Adults. Journal of Infectious Diseases, 2005, 191, 1263-1271.	1.9	178
49	Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria. PLoS Pathogens, 2009, 5, e1000400.	2.1	170
50	Morphological autonomy and diachrony. Morphology, 2005, , 137-175.	0.3	168
51	A chromosomally integrated bacteriophage in invasive meningococci. Journal of Experimental Medicine, 2005, 201, 1905-1913.	4.2	166
52	A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics, 2014, 15, 1138.	1.2	164
53	Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. International Journal of Food Microbiology, 2009, 134, 96-103.	2.1	158
54	Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology (United Kingdom), 2003, 149, 1849-1858.	0.7	156

#	Article	IF	CITATIONS
55	Many carried meningococci lack the genes required for capsule synthesis and transport The GenBank accession number for the sequence of the cnl-1 allele is AJ308327 Microbiology (United Kingdom), 2002, 148, 1813-1819.	0.7	154
56	A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology (United Kingdom), 2012, 158, 1570-1580.	0.7	153
57	Irregularity as a determinant of morphological change. Journal of Linguistics, 1992, 28, 285-312.	0.5	152
58	Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiology Reviews, 2007, 31, 89-96.	3.9	150
59	Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. International Journal of Food Microbiology, 2018, 274, 1-11.	2.1	150
60	Genetic Diversity of Campylobacter jejuni Isolates from Farm Animals and the FarmEnvironment. Applied and Environmental Microbiology, 2003, 69, 7409-7413.	1.4	149
61	PorA Variable Regions of <i>Neisseria meningitidis</i> . Emerging Infectious Diseases, 2004, 10, 674-678.	2.0	142
62	Carried Meningococci in the Czech Republic: a Diverse Recombining Population. Journal of Clinical Microbiology, 2000, 38, 4492-4498.	1.8	142
63	Meningococcal conjugate vaccines: new opportunities and new challenges. Lancet, The, 1999, 354, 615-616.	6.3	141
64	The Influence of Mutation, Recombination, Population History, and Selection on Patterns of Genetic Diversity in Neisseria meningitidis. Molecular Biology and Evolution, 2005, 22, 562-569.	3.5	138
65	Candida albicans Strain Maintenance, Replacement, and Microvariation Demonstrated by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2006, 44, 3647-3658.	1.8	138
66	Insect life history and the evolution of bacterial mutualism. Ecology Letters, 2015, 18, 516-525.	3.0	138
67	Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Molecular Microbiology, 1992, 6, 489-495.	1.2	137
68	Comparison of the class 1 outer membrane proteins of eight serological reference strains of Neisseria meningitidis. Molecular Microbiology, 1991, 5, 727-736.	1.2	136
69	A Gene-By-Gene Approach to Bacterial Population Genomics: Whole Genome MLST of Campylobacter. Genes, 2012, 3, 261-277.	1.0	135
70	Multilocus Sequence Typing for Differentiation of Strains of Candida tropicalis. Journal of Clinical Microbiology, 2005, 43, 5593-5600.	1.8	134
71	Host-associated Genetic Import in <i>Campylobacter jejuni</i> . Emerging Infectious Diseases, 2007, 13, 267-272.	2.0	134
72	A surveillance network for meningococcal disease in Europe. FEMS Microbiology Reviews, 2007, 31, 27-36.	3.9	134

#	Article	IF	CITATIONS
73	Meningococcal B Vaccine and Meningococcal Carriage in Adolescents in Australia. New England Journal of Medicine, 2020, 382, 318-327.	13.9	133
74	The porA gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation. Molecular Microbiology, 1994, 12, 253-265.	1.2	132
75	Hyperinvasive Neonatal Group B Streptococcus Has Arisen from a Bovine Ancestor. Journal of Clinical Microbiology, 2004, 42, 2161-2167.	1.8	132
76	Cryptic ecology among host generalist <i>Campylobacter jejuni</i> in domestic animals. Molecular Ecology, 2014, 23, 2442-2451.	2.0	131
77	Structural and Evolutionary Inference from Molecular Variation in <i>Neisseria</i> Porins. Infection and Immunity, 1999, 67, 2406-2413.	1.0	131
78	Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biology and Evolution, 2015, 7, 1313-1328.	1.1	130
79	Progressive genomeâ€wide introgression in agricultural <i>Campylobacter coli</i> . Molecular Ecology, 2013, 22, 1051-1064.	2.0	128
80	Optimization and Validation of Multilocus Sequence Typing for Candida albicans. Journal of Clinical Microbiology, 2003, 41, 3765-3776.	1.8	125
81	Real-Time Genomic Epidemiological Evaluation of Human Campylobacter Isolates by Use of Whole-Genome Multilocus Sequence Typing. Journal of Clinical Microbiology, 2013, 51, 2526-2534.	1.8	124
82	A Reference Pan-Genome Approach to Comparative Bacterial Genomics: Identification of Novel Epidemiological Markers in Pathogenic Campylobacter. PLoS ONE, 2014, 9, e92798.	1.1	122
83	Role of selection in the emergence of lineages and the evolution of virulence in <i>Neisseria meningitidis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15082-15087.	3.3	121
84	The Evolution of <i>Campylobacter jejuni</i> and <i>Campylobacter coli</i> . Cold Spring Harbor Perspectives in Biology, 2015, 7, a018119.	2.3	119
85	Attribution of <i>Campylobacter</i> Infections in Northeast Scotland to Specific Sources by Use of Multilocus Sequence Typing. Journal of Infectious Diseases, 2009, 199, 1205-1208.	1.9	117
86	When lexemes become allomorphs - On the genesis of suppletion. Folia Linguistica, 2004, 38, .	0.1	116
87	Host Association of <i>Campylobacter</i> Genotypes Transcends Geographic Variation. Applied and Environmental Microbiology, 2010, 76, 5269-5277.	1.4	116
88	Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory. Journal of Microbiological Methods, 2013, 94, 390-396.	0.7	115
89	Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nature Communications, 2018, 9, 5034.	5.8	115
90	Environmental <i>Burkholderia cepacia</i> Complex Isolates from Human Infections. Emerging Infectious Diseases, 2007, 13, 458-461.	2.0	112

#	Article	IF	CITATIONS
91	Hybrid <i>Vibrio vulnificus</i> . Emerging Infectious Diseases, 2005, 11, 30-35.	2.0	109
92	Horizontal Genetic Exchange, Evolution, and Spread of Antibiotic Resistance in Bacteria. Clinical Infectious Diseases, 1998, 27, S12-S20.	2.9	108
93	Exploring the evolution of diversity in pathogen populations. Trends in Microbiology, 2001, 9, 181-185.	3.5	106
94	Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiology Reviews, 2007, 31, 15-26.	3.9	105
95	Niche segregation and genetic structure of <i>Campylobacter jejuni</i> populations from wild and agricultural host species. Molecular Ecology, 2011, 20, 3484-3490.	2.0	105
96	Core Genome Multilocus Sequence Typing Scheme for Stable, Comparative Analyses of Campylobacter jejuni and C. coli Human Disease Isolates. Journal of Clinical Microbiology, 2017, 55, 2086-2097.	1.8	105
97	Development of an unambiguous and discriminatory multilocus sequence typing scheme for the Streptococcus zooepidemicus group. Microbiology (United Kingdom), 2008, 154, 3016-3024.	0.7	102
98	Multilocus Sequence Typing and Antigen Gene Sequencing in the Investigation of a Meningococcal Disease Outbreak. Journal of Clinical Microbiology, 1999, 37, 3883-3887.	1.8	100
99	Marked host specificity and lack of phylogeographic population structure of <i>Campylobacter jejuni</i> in wild birds. Molecular Ecology, 2013, 22, 1463-1472.	2.0	96
100	Antigenic Shift and Increased Incidence of Meningococcal Disease. Journal of Infectious Diseases, 2006, 193, 1266-1274.	1.9	95
101	Sequence Variation of the SeM Gene of Streptococcus equi Allows Discrimination of the Source of Strangles Outbreaks. Journal of Clinical Microbiology, 2006, 44, 480-486.	1.8	95
102	Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing. BMC Biology, 2007, 5, 35.	1.7	95
103	Nasal Inoculation of the Commensal Neisseria lactamica Inhibits Carriage of Neisseria meningitidis by Young Adults: A Controlled Human Infection Study. Clinical Infectious Diseases, 2015, 60, 1512-1520.	2.9	95
104	Population genetics of a transformable bacterium: The influence of horizontal genetic exchange on the biology ofNeisseria meningitidis. FEMS Microbiology Letters, 1993, 112, 243-250.	0.7	90
105	Comparison of <i>Campylobacter</i> Populations in Wild Geese with Those in Starlings and Free-Range Poultry on the Same Farm. Applied and Environmental Microbiology, 2008, 74, 3583-3590.	1.4	90
106	Multi Locus Sequence Typing of Chlamydia Reveals an Association between Chlamydia psittaci Genotypes and Host Species. PLoS ONE, 2010, 5, e14179.	1.1	90
107	<i>Campylobacter</i> infection of broiler chickens in a freeâ€range environment. Environmental Microbiology, 2008, 10, 2042-2050.	1.8	89
108	Genomeâ€wide association of functional traits linked with <scp><i>C</i></scp> <i>ampylobacter jejuni</i> survival from farm to fork. Environmental Microbiology, 2017, 19, 361-380.	1.8	88

#	Article	IF	CITATIONS
109	Population genomics: diversity and virulence in the Neisseria. Current Opinion in Microbiology, 2008, 11, 467-471.	2.3	84
110	Population structure of the <i>Yersinia pseudotuberculosis</i> complex according to multilocus sequence typing. Environmental Microbiology, 2011, 13, 3114-3127.	1.8	84
111	Phylogenetic Evidence for Frequent Positive Selection and Recombination in the Meningococcal Surface Antigen PorB. Molecular Biology and Evolution, 2002, 19, 1686-1694.	3.5	83
112	Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales?. Science of the Total Environment, 2019, 672, 618-624.	3.9	83
113	A global gene pool in the neisseriae. Molecular Microbiology, 1996, 21, 1297-1298.	1.2	82
114	<i>Campylobacter</i> Excreted into the Environment by Animal Sources: Prevalence, Concentration Shed, and Host Association. Foodborne Pathogens and Disease, 2009, 6, 1161-1170.	0.8	81
115	Sequence Typing Confirms that Campylobacter jejuni Strains Associated with Guillain-Barrel•and Miller-Fisher Syndromes Are of Diverse Genetic Lineage, Serotype, and Flagella Type. Journal of Clinical Microbiology, 2001, 39, 3346-3349.	1.8	80
116	Using MLST to study bacterial variation: prospects in the genomic era. Future Microbiology, 2014, 9, 623-630.	1.0	80
117	Clonal Nature of Campylobacter fetus as Defined by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2005, 43, 5888-5898.	1.8	79
118	A Longitudinal 6-Year Study of the Molecular Epidemiology of Clinical Campylobacter Isolates in Oxfordshire, United Kingdom. Journal of Clinical Microbiology, 2012, 50, 3193-3201.	1.8	79
119	Variation of the factor H-binding protein of Neisseria meningitidis. Microbiology (United Kingdom), 2009, 155, 4155-4169.	0.7	79
120	A gonococcal porA pseudogene: implications for understanding the evolution and pathogenicity of Neisseria gonorrhoeae. Molecular Microbiology, 1998, 30, 647-656.	1.2	78
121	Evolution of an Agriculture-Associated Disease Causing Campylobacter coli Clade: Evidence from National Surveillance Data in Scotland. PLoS ONE, 2010, 5, e15708.	1.1	75
122	Extended Sequence Typing of <i>Campylobacter</i> spp., United Kingdom. Emerging Infectious Diseases, 2008, 14, 1620-1622.	2.0	73
123	Resolution of a Meningococcal Disease Outbreak from Whole-Genome Sequence Data with Rapid Web-Based Analysis Methods. Journal of Clinical Microbiology, 2012, 50, 3046-3053.	1.8	72
124	Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model. PLoS Computational Biology, 2014, 10, e1003788.	1.5	72
125	The Landscape of Realized Homologous Recombination in Pathogenic Bacteria. Molecular Biology and Evolution, 2016, 33, 456-471.	3.5	72
126	Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genetics and Biology, 2004, 41, 553-562.	0.9	71

#	Article	IF	CITATIONS
127	Genetic Diversity and Carriage Dynamics of Neisseria lactamica in Infants. Infection and Immunity, 2005, 73, 2424-2432.	1.0	70
128	Strain Typing and Determination of Population Structure of Candida krusei by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2007, 45, 317-323.	1.8	70
129	Molecular analysis of the serotyping antigens of Neisseria meningitidis. Infection and Immunity, 1992, 60, 3620-3629.	1.0	69
130	<i>Campylobacter</i> populations in wild and domesticated Mallard ducks (<i>Anas) Tj ETQq0 0 0 rgBT /Overloc</i>	k 10 Tf 50 1.0	622 Td (plat
131	The Diversity of Meningococcal Carriage Across the African Meningitis Belt and the Impact of Vaccination With a Group A Meningococcal Conjugate Vaccine. Journal of Infectious Diseases, 2015, 212, 1298-1307.	1.9	68
132	First Insights into the Evolution of Streptococcus uberis : a Multilocus Sequence Typing Scheme That Enables Investigation of Its Population Biology. Applied and Environmental Microbiology, 2006, 72, 1420-1428.	1.4	66
133	Campylobacter sequence typing databases: applications and future prospects. Microbiology (United) Tj ETQq1 1	0.784314 0.7	rgBT /Overic
134	Dynamics of <i>Campylobacter</i> colonization of a natural host, <i>Sturnus vulgaris</i> (European) Tj ETQq0 0	0 rgBT /O 1.8	verlock 10 Tf
135	Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infectious Diseases, The, 2015, 15, 1420-1428.	4.6	63
136	Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: Implications for immunisation. Vaccine, 2016, 34, 4690-4697.	1.7	63
137	Association of a Bacteriophage with Meningococcal Disease in Young Adults. PLoS ONE, 2008, 3, e3885.	1.1	62
138	Molecular Evidence for Dissemination of Unique Campylobacter jejuni Clones in Curaçao, Netherlands Antilles. Journal of Clinical Microbiology, 2003, 41, 5593-5597.	1.8	61
139	Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics, 2010, 11, 652.	1.2	61
140	Wild birdâ€associated <scp> <i>C</i> </scp> <i>ampylobacter jejuni</i> isolates are a consistent source of human disease, in <scp>O</scp> xfordshire, <scp>U</scp> nited <scp>K</scp> ingdom. Environmental Microbiology Reports, 2015, 7, 782-788.	1.0	61
141	Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Research, 2015, 43, 4150-4162.	6.5	58
142	Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence. Microbiology (United Kingdom), 2011, 157, 1446-1456.	0.7	58
143	Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages. BMC Microbiology, 2013, 13, 160.	1.3	57
144	Multilocus Sequence Typing. Methods in Molecular Biology, 2009, 551, 129-140.	0.4	57

#	Article	IF	CITATIONS
145	Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar. Eurosurveillance, 2013, 18, 20379.	3.9	57
146	Diversity in pathogenicity can cause outbreaks of meningococcal disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10229-10234.	3.3	55
147	Population structure of Streptococcus oralis. Microbiology (United Kingdom), 2009, 155, 2593-2602.	0.7	55
148	Identifying Neisseria Species by Use of the 50S Ribosomal Protein L6 (<i>rplF</i>) Gene. Journal of Clinical Microbiology, 2014, 52, 1375-1381.	1.8	55
149	Neisseria Adhesin A Variation and Revised Nomenclature Scheme. Vaccine Journal, 2014, 21, 966-971.	3.2	54
150	Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. Journal of Infection, 2016, 73, 578-587.	1.7	54
151	The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12. Journal of Biological Chemistry, 1988, 263, 8003-10.	1.6	54
152	The evolution of genetic structure in the marine pathogen, Vibrio vulnificus. Infection, Genetics and Evolution, 2007, 7, 685-693.	1.0	52
153	Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden Markov Models. PLoS Computational Biology, 2017, 13, e1005652.	1.5	52
154	Agricultural intensification and the evolution of host specialism in the enteric pathogen <i>Campylobacter jejuni</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11018-11028.	3.3	50
155	A systematic review of source attribution of human campylobacteriosis using multilocus sequence typing. Eurosurveillance, 2019, 24, .	3.9	50
156	Genotypic and Phenotypic Modifications of Neisseria meningitidis after an Accidental Human Passage. PLoS ONE, 2011, 6, e17145.	1.1	49
157	Biofilm Morphotypes and Population Structure among Staphylococcus epidermidis from Commensal and Clinical Samples. PLoS ONE, 2016, 11, e0151240.	1.1	49
158	Vaccination Drives Changes in Metabolic and Virulence Profiles of Streptococcus pneumoniae. PLoS Pathogens, 2015, 11, e1005034.	2.1	49
159	Monoclonal antibody recognition of members of the meningococcal P1.10 variable region family: implications for serological typing and vaccine design. Microbiology (United Kingdom), 1996, 142, 63-69.	0.7	48
160	Monitoring chicken flock behaviour provides early warning of infection by human pathogen <i>Campylobacter</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152323.	1.2	47
161	Pharyngeal carriage of Neisseria species inÂthe African meningitis belt. Journal of Infection, 2016, 72, 667-677.	1.7	47
162	Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation. MBio, 2020, 11, .	1.8	47

#	Article	IF	CITATIONS
163	The Romance Verb. , 2018, , .		47
164	Introgression in the genus Campylobacter: generation and spread of mosaic alleles. Microbiology (United Kingdom), 2011, 157, 1066-1074.	0.7	47
165	Identification of meningococcal serosubtypes by polymerase chain reaction. Journal of Clinical Microbiology, 1992, 30, 2835-2841.	1.8	47
166	Campylobacter Infection in Children in Malawi Is Common and Is Frequently Associated with Enteric Virus Co-Infections. PLoS ONE, 2013, 8, e59663.	1.1	47
167	Recombination-Mediated Host Adaptation by Avian Staphylococcus aureus. Genome Biology and Evolution, 2017, 9, 830-842.	1.1	46
168	A Strange Affinity: †Perfecto y tiempos afines'. Bulletin of Hispanic Studies, 2001, 78, 441-464.	0.0	45
169	MLST clustering of <i>Campylobacter jejuni</i> isolates from patients with gastroenteritis, reactive arthritis and Guillain–Barré syndrome. Journal of Applied Microbiology, 2010, 108, 591-599.	1.4	45
170	From pure phonology to pure morphology the reshaping of the romance verb. Recherches Linguistiques De Vincennes, 2009, , 45-82.	0.5	45
171	Changes in Serogroup and Genotype Prevalence Among Carried Meningococci in the United Kingdom During Vaccine Implementation. Journal of Infectious Diseases, 2011, 204, 1046-1053.	1.9	44
172	Genomics Reveals the Worldwide Distribution of Multidrug-Resistant Serotype 6E Pneumococci. Journal of Clinical Microbiology, 2015, 53, 2271-2285.	1.8	44
173	Opacity-Associated Adhesin Repertoire in Hyperinvasive Neisseria meningitidis. Infection and Immunity, 2006, 74, 5085-5094.	1.0	42
174	Genome sequence analyses show that Neisseria oralis is the same species as †Neisseria mucosa var. heidelbergensis'. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3920-3926.	0.8	42
175	The impact of protein-conjugate polysaccharide vaccines: an endgame for meningitis?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120147.	1.8	42
176	Partial Failure of Milk Pasteurization as a Risk for the Transmission of <i>Campylobacter</i> From Cattle to Humans. Clinical Infectious Diseases, 2015, 61, 903-909.	2.9	41
177	Putatively novel serotypes and the potential for reduced vaccine effectiveness: capsular locus diversity revealed among 5405 pneumococcal genomes. Microbial Genomics, 2016, 2, 000090.	1.0	41
178	Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences. BMC Genomics, 2014, 15, 253.	1.2	40
179	Bacteriocin-mediated competition in cystic fibrosis lung infections. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150972.	1.2	40
180	A novel meningococcal outer membrane vesicle vaccine with constitutive expression of FetA: A phase I clinical trial. Journal of Infection, 2015, 71, 326-337.	1.7	40

#	Article	IF	CITATIONS
181	Identification of Novel Neisseria gonorrhoeae Lineages Harboring Resistance Plasmids in Coastal Kenya. Journal of Infectious Diseases, 2018, 218, 801-808.	1.9	40
182	Elucidating the Aetiology of Human Campylobacter coli Infections. PLoS ONE, 2013, 8, e64504.	1.1	40
183	Distribution and diversity of the haemoglobin–haptoglobin iron-acquisition systems in pathogenic and non-pathogenic Neisseria. Microbiology (United Kingdom), 2013, 159, 1920-1930.	0.7	39
184	Molecular epidemiology of humanCampylobacter jejunishows association between seasonal and international patterns of disease. Epidemiology and Infection, 2012, 140, 2247-2255.	1.0	38
185	Population and Functional Genomics of Neisseria Revealed with Gene-by-Gene Approaches. Journal of Clinical Microbiology, 2016, 54, 1949-1955.	1.8	38
186	Carriage of serogroup W-135, ET-37 meningococci in The Gambia: implications for immunisation policy?. Lancet, The, 2000, 356, 1078.	6.3	37
187	Some lessons from history. , 2016, , 33-63.		37
188	Persistence of Hyperinvasive Meningococcal Strain Types during Global Spread as Recorded in the PubMLST Database. PLoS ONE, 2012, 7, e45349.	1.1	37
189	PHONOLOGICAL PROCESSES. , 2010, , 109-154.		36
190	Identifying the seasonal origins of human campylobacteriosis. Epidemiology and Infection, 2013, 141, 1267-1275.	1.0	36
191	Local genes for local bacteria: Evidence of allopatry in the genomes of transatlantic <i>Campylobacter</i> populations. Molecular Ecology, 2017, 26, 4497-4508.	2.0	36
192	Neisseria gonorrhoeae Population Genomics: Use of the Gonococcal Core Genome to Improve Surveillance of Antimicrobial Resistance. Journal of Infectious Diseases, 2020, 222, 1816-1825.	1.9	36
193	Population Genetic and Evolutionary Approaches to Analysis of <i>Neisseria meningitidis</i> Isolates Belonging to the ET-5 Complex. Journal of Bacteriology, 1999, 181, 5551-5556.	1.0	36
194	Application of Streptococcus uberis Multilocus Sequence Typing: Analysis of the Population Structure Detected among Environmental and Bovine Isolates from New Zealand and the United Kingdom. Applied and Environmental Microbiology, 2006, 72, 1429-1436.	1.4	35
195	Priorities for research on meningococcal disease and the impact of serogroup A vaccination in the African meningitis belt. Vaccine, 2013, 31, 1453-1457.	1.7	35
196	Meningococcal carriage in the A frican meningitis belt. Tropical Medicine and International Health, 2013, 18, 968-978.	1.0	35
197	High-throughput sequencing in the population analysis of bacterial pathogens of humans. International Journal of Medical Microbiology, 2000, 290, 183-190.	1.5	34
198	Epidemiological Evidence for the Role of the Hemoglobin Receptor, HmbR, in Meningococcal Virulence. Journal of Infectious Diseases, 2009, 200, 94-98.	1.9	34

#	Article	IF	CITATIONS
199	MORPHOLOGICAL PERSISTENCE. , 2010, , 155-214.		34
200	MORPHOSYNTACTIC PERSISTENCE., 2010,, 318-381.		34
201	Collection and characterisation of bacterial membrane proteins. FEBS Letters, 2003, 555, 170-175.	1.3	33
202	Genetic mechanisms for loss of encapsulation in polysialyltransferase-gene-positive meningococci isolated from healthy carriers. International Journal of Medical Microbiology, 2006, 296, 475-484.	1.5	33
203	Genetic Diversity of Campylobacter jejuni and Campylobacter coli Isolates from Conventional Broiler Flocks and the Impacts of Sampling Strategy and Laboratory Method. Applied and Environmental Microbiology, 2016, 82, 2347-2355.	1.4	33
204	A RESTful application programming interface for the PubMLST molecular typing and genome databases. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	33
205	Amplification of the meningococcal porB gene for non-culture serotype characterization. Epidemiology and Infection, 1998, 120, 257-262.	1.0	32
206	Multilocus-sequence typing analysis reveals similar populations of Streptococcus uberis are responsible for bovine intramammary infections of short and long duration. Veterinary Microbiology, 2007, 119, 194-204.	0.8	32
207	Spatiotemporal Homogeneity of Campylobacter Subtypes from Cattle and Sheep across Northeastern and Southwestern Scotland. Applied and Environmental Microbiology, 2009, 75, 6275-6281.	1.4	32
208	Comparison of Campylobacter populations isolated from a free-range broiler flock before and after slaughter. International Journal of Food Microbiology, 2010, 137, 259-264.	2.1	32
209	Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. Microbiology (United Kingdom), 2011, 157, 2181-2195.	0.7	32
210	Human Transgene-Free Amniotic-Fluid-Derived Induced Pluripotent Stem Cells for Autologous Cell Therapy. Stem Cells and Development, 2014, 23, 2613-2625.	1.1	32
211	Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Scientific Reports, 2016, 6, 21015.	1.6	32
212	Crystal structure of an Fab fragment in complex with a meningococcal serosubtype antigen and a protein G domain. Journal of Molecular Biology, 1999, 293, 81-91.	2.0	31
213	The Effect of Immune Selection on the Structure of the Meningococcal Opa Protein Repertoire. PLoS Pathogens, 2008, 4, e1000020.	2.1	31
214	Genealogical typing of Neisseria meningitidis. Microbiology (United Kingdom), 2009, 155, 3176-3186.	0.7	31
215	A Dual Barcoding Approach to Bacterial Strain Nomenclature: Genomic Taxonomy of <i>Klebsiella pneumoniae</i> Strains. Molecular Biology and Evolution, 2022, 39, .	3.5	31
216	Long-term evolution of antigen repertoires among carried meningococci. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1635-1641.	1.2	30

#	Article	IF	CITATIONS
217	Campylobacter genotypes from poultry transportation crates indicate a source of contamination and transmission. Journal of Applied Microbiology, 2011, 110, 266-276.	1.4	30
218	Glucose Metabolism via the Entner-Doudoroff Pathway in Campylobacter: A Rare Trait that Enhances Survival and Promotes Biofilm Formation in Some Isolates. Frontiers in Microbiology, 2016, 7, 1877.	1.5	30
219	Household transmission of Neisseria meningitidis in the African meningitis belt: a longitudinal cohort study. The Lancet Clobal Health, 2016, 4, e989-e995.	2.9	30
220	Frequent capsule switching in â€~ultra-virulent' meningococci – Are weÂready for a serogroup B ST-11 complexÂoutbreak?. Journal of Infection, 2017, 75, 95-103.	1.7	30
221	Molecular variation of meningococcal serotype 4 antigen genes. Epidemiology and Infection, 1998, 121, 95-101.	1.0	29
222	The domestication of the probiotic bacterium Lactobacillus acidophilus. Scientific Reports, 2014, 4, 7202.	1.6	29
223	Recent Progress in the Prevention of Serogroup B Meningococcal Disease. Vaccine Journal, 2017, 24, .	3.2	29
224	Genomic characterization of novel Neisseria species. Scientific Reports, 2019, 9, 13742.	1.6	29
225	Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) Index: a Rapid and Accessible Tool That Exploits Genomic Data in Public Health and Clinical Microbiology Applications. Journal of Clinical Microbiology, 2020, 59, .	1.8	29
226	Molecular epidemiology of meningococcal disease in England and Wales 1975–1995, before the introduction of serogroup C conjugate vaccines. Microbiology (United Kingdom), 2008, 154, 1170-1177.	0.7	29
227	Into the past. Diachronica, 2004, 21, 85-111.	0.2	28
228	AgdbNet – antigen sequence database software for bacterial typing. BMC Bioinformatics, 2006, 7, 314.	1.2	28
229	B Part of It protocol: a cluster randomised controlled trial to assess the impact of 4CMenB vaccine on pharyngeal carriage of <i>Neisseria meningitidis </i> in adolescents. BMJ Open, 2018, 8, e020988.	0.8	28
230	Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor. Microbiology (United Kingdom), 2010, 156, 1384-1393.	0.7	28
231	Un capitolo di morfologia storica del romeno: preterito e tempi affini. Zeitschrift Fur Romanische Philologie, 2009, 125, .	0.0	27
232	Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease. BMC Genomics, 2018, 19, 130.	1.2	27
233	Heavy Metal Susceptibility of Escherichia coli Isolated from Urine Samples from Sweden, Germany, and Spain. Antimicrobial Agents and Chemotherapy, 2018, 62,	1.4	27
234	Meningococcal typing. Journal of Medical Microbiology, 1994, 40, 157-158.	0.7	27

#	Article	IF	CITATIONS
235	Isolation and characterization of Neisseria musculi sp. nov., from the wild house mouse. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3585-3593.	0.8	27
236	Genomic analysis of urogenital and rectal <i>Neisseria meningitidis</i> isolates reveals encapsulated hyperinvasive meningococci and coincident multidrug-resistant gonococci. Sexually Transmitted Infections, 2017, 93, 445-451.	0.8	26
237	Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microbial Genomics, 2019, 5, .	1.0	26
238	Domestication of Campylobacter jejuni NCTC 11168. Microbial Genomics, 2019, 5, .	1.0	26
239	Distribution of transferrin binding protein B gene (tbpB) variants among Neisseria species. BMC Microbiology, 2008, 8, 66.	1.3	25
240	Structural Alterations in a Component of Cytochrome c Oxidase and Molecular Evolution of Pathogenic Neisseria in Humans. PLoS Pathogens, 2010, 6, e1001055.	2.1	25
241	The Latin â€~third stem' and its Romance descendants. Diachronica, 2013, 30, 492-530.	0.2	25
242	Genome-Based Characterization of Emergent Invasive Neisseria meningitidis Serogroup Y Isolates in Sweden from 1995 to 2012. Journal of Clinical Microbiology, 2015, 53, 2154-2162.	1.8	25
243	Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. Science of the Total Environment, 2019, 690, 1-6.	3.9	25
244	Microevolution of Campylobacter jejuni during long-term infection in an immunocompromised host. Scientific Reports, 2020, 10, 10109.	1.6	25
245	Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae. Genome Medicine, 2021, 13, 51.	3.6	25
246	Use of a Molecular Decoy to Segregate Transport from Antigenicity in the FrpB Iron Transporter from Neisseria meningitidis. PLoS ONE, 2013, 8, e56746.	1.1	25
247	A common gene pool for the Neisseria FetA antigen. International Journal of Medical Microbiology, 2009, 299, 133-139.	1.5	24
248	Evolutionary and genomic insights into meningococcal biology. Future Microbiology, 2012, 7, 873-885.	1.0	24
249	Evidence for Phenotypic Plasticity among Multihost Campylobacter jejuni and C. coli Lineages, Obtained Using Ribosomal Multilocus Sequence Typing and Raman Spectroscopy. Applied and Environmental Microbiology, 2013, 79, 965-973.	1.4	24
250	The longâ€ŧerm dynamics of <scp><i>C</i></scp> <i>ampylobacter</i> colonizing a freeâ€ŧange broiler breeder flock: an observational study. Environmental Microbiology, 2015, 17, 938-946.	1.8	24
251	Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection. Nature Communications, 2018, 9, 4753.	5.8	24
252	Genomic Surveillance of 4CMenB Vaccine Antigenic Variants among Disease-Causing Neisseria meningitidis Isolates, United Kingdom, 2010–2016. Emerging Infectious Diseases, 2018, 24, 673-682.	2.0	24

#	Article	IF	CITATIONS
253	Meningococcal carriage in periods of high and low invasive meningococcal disease incidence in the UK: comparison of UKMenCar1–4 cross-sectional survey results. Lancet Infectious Diseases, The, 2021, 21, 677-687.	4.6	24
254	Sulla morfologizzazione della metafonesi nei dialetti italiani meridionali. Zeitschrift Fur Romanische Philologie, 1989, 105, .	0.0	23
255	Phenotypic and Genotypic Approaches to Characterization of Isolates of Neisseria meningitidis from Patients and Their Close Family Contacts. Journal of Clinical Microbiology, 2001, 39, 1235-1240.	1.8	23
256	Pathogenesis and Pathophysiology of Invasive Meningococcal Disease. , 2006, , 427-480.		23
257	SYLLABLE, SEGMENT AND PROSODY. , 2010, , 50-108.		23
258	Acquisition of the capsule locus by horizontal gene transfer in Neisseria meningitidis is often accompanied by the loss of UDP-GalNAc synthesis. Scientific Reports, 2017, 7, 44442.	1.6	23
259	Neisseria genomics: current status and future perspectives. Pathogens and Disease, 2017, 75, .	0.8	23
260	THE ROMANCE GERUND AND †SYSTEM-DEPENDENT NATURALNESS' IN MORPHOLOGY. Transactions of the Philological Society, 1996, 94, 167-201.	0.4	22
261	Meningococcal serogroup B vaccines: will they live up to expectations?. Expert Review of Vaccines, 2011, 10, 559-561.	2.0	22
262	Lineage structure of Streptococcus pneumoniae may be driven by immune selection on the groEL heat-shock protein. Scientific Reports, 2017, 7, 9023.	1.6	22
263	Association of Neisseria gonorrhoeae Plasmids With Distinct Lineages and The Economic Status of Their Country of Origin. Journal of Infectious Diseases, 2020, 222, 1826-1836.	1.9	22
264	Romanian, Istro-Romanian, Megleno-Romanian, and Aromanian. , 2016, , 91-125.		22
265	ll sistema desinenziale del sostantivo nell'italo-romanzo preletterario. Ricostruzione parziale a partire dai dialetti moderni (il significato storico di plurali del tipo amici). , 0, , .		22
266	Clonal Distribution of Disease-Associated and Healthy Carrier Isolates of <i>Neisseria meningitidis</i> between 1983 and 2005 in Cuba. Journal of Clinical Microbiology, 2010, 48, 802-810.	1.8	21
267	Genotypic and Phenotypic Characterization of Carriage and Invasive Disease Isolates of Neisseria meningitidis in Finland. Journal of Clinical Microbiology, 2012, 50, 264-273.	1.8	21
268	Paracrine regulation of fetal lung morphogenesis using human placenta-derived mesenchymal stromal cells. Journal of Surgical Research, 2014, 190, 255-263.	0.8	21
269	The Prevalence of Campylobacter amongst a Free-Range Broiler Breeder Flock Was Primarily Affected by Flock Age. PLoS ONE, 2011, 6, e22825.	1.1	20
270	Potential of Recombinant Opa Proteins as Vaccine Candidates against Hyperinvasive Meningococci. Infection and Immunity, 2011, 79, 2810-2818.	1.0	20

#	Article	IF	CITATIONS
271	Genomic Analysis of the Evolution and Global Spread of Hyper-invasive Meningococcal Lineage 5. EBioMedicine, 2015, 2, 234-243.	2.7	20
272	The effect of iron availability on transcription of the Neisseria meningitidis fHbp gene varies among clonal complexes. Microbiology (United Kingdom), 2012, 158, 869-876.	0.7	20
273	Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme. Clinical Microbiology and Infection, 2022, 28, 1649.e1-1649.e8.	2.8	20
274	Structure and Genetics of the Meningococcal Capsule. , 2006, , 145-162.		19
275	Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development. Vaccine Journal, 2014, 21, 847-853.	3.2	19
276	An evaluation of the species and subspecies of the genus Salmonella with whole genome sequence data: Proposal of type strains and epithets for novel S. enterica subspecies VII, VIII, IX, X and XI. Genomics, 2021, 113, 3152-3162.	1.3	19
277	Invasion by Neisseria meningitidis varies widely between clones and among nasopharyngeal mucosae derived from adult human hosts. Microbiology (United Kingdom), 2002, 148, 1467-1474.	0.7	19
278	Variation in the Neisseria lactamica porin, and its relationship to meningococcal PorB. Microbiology (United Kingdom), 2008, 154, 1525-1534.	0.7	18
279	Duck Liver–associated Outbreak of Campylobacteriosis among Humans, United Kingdom, 2011. Emerging Infectious Diseases, 2013, 19, 1310-1313.	2.0	18
280	Metabolic shift in the emergence of hyperinvasive pandemic meningococcal lineages. Scientific Reports, 2017, 7, 41126.	1.6	18
281	Potential Coverage of the 4CMenB Vaccine against Invasive Serogroup B <i>Neisseria meningitidis</i> Isolated from 2009 to 2013 in the Republic of Ireland. MSphere, 2018, 3, .	1.3	18
282	Dynamics of Bacterial Carriage and Disease: Lessons from the Meningococcus. Advances in Experimental Medicine and Biology, 2004, 549, 23-29.	0.8	17
283	Operationalising Factors That Explain the Emergence of Infectious Diseases: A Case Study of the Human Campylobacteriosis Epidemic. PLoS ONE, 2013, 8, e79331.	1.1	17
284	Methods for Identifying Neisseria meningitidis Carriers: A Multi-Center Study in the African Meningitis Belt. PLoS ONE, 2013, 8, e78336.	1.1	17
285	Molecular characterization of invasive capsule null Neisseria meningitidis in South Africa. BMC Microbiology, 2017, 17, 40.	1.3	17
286	Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. ELife, 2022, 11, .	2.8	17
287	Surrogates of Protection. , 2006, , 323-341.		16
288	Haplotypic diversity in human CEACAM genes: effects on susceptibility to meningococcal disease. Genes and Immunity, 2008, 9, 30-37.	2.2	16

#	Article	IF	CITATIONS
289	Resolution of a Protracted Serogroup B Meningococcal Outbreak with Whole-Genome Sequencing Shows Interspecies Genetic Transfer. Journal of Clinical Microbiology, 2016, 54, 2891-2899.	1.8	16
290	Toward a Global Genomic Epidemiology of Meningococcal Disease. Journal of Infectious Diseases, 2019, 220, S266-S273.	1.9	16
291	Parallel sequencing of porA reveals a complex pattern of Campylobacter genotypes that differs between broiler and broiler breeder chickens. Scientific Reports, 2019, 9, 6204.	1.6	16
292	An MLST approach to support tracking of plasmids carrying OXA-48-like carbapenemase. Journal of Antimicrobial Chemotherapy, 2019, 74, 1856-1862.	1.3	16
293	Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genetics, 2019, 15, e1008532.	1.5	16
294	Opa Protein Repertoires of Disease-Causing and Carried Meningococci. Journal of Clinical Microbiology, 2008, 46, 3033-3041.	1.8	15
295	Where does heteroclisis come from? Evidence from Romanian dialects. Morphology, 2009, 19, 59-86.	0.8	15
296	Alternative Molecular Methods for Improved Detection of Meningococcal Carriage and Measurement of Bacterial Density. Journal of Clinical Microbiology, 2016, 54, 2743-2748.	1.8	15
297	Hierarchical genomic analysis of carried and invasive serogroup A Neisseria meningitidis during the 2011 epidemic in Chad. BMC Genomics, 2017, 18, 398.	1.2	15
298	Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine, 2021, 65, 103274.	2.7	15
299	Meningococcal vaccine antigen diversity in global databases. Eurosurveillance, 2015, 20, .	3.9	15
300	Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathogens, 2021, 17, e1009992.	2.1	15
301	Attenuated typhoid vaccine Salmonella typhi Ty21a: fingerprinting and quality control. Microbiology (United Kingdom), 1995, 141, 1993-2002.	0.7	14
302	Molecular Techniques for the Investigation of Meningococcal Disease Epidemiology. Molecular Biotechnology, 2001, 18, 119-134.	1.3	14
303	Reference isolates for the clonal complexes of Campylobacter jejuni. Letters in Applied Microbiology, 2003, 36, 106-110.	1.0	14
304	MORPHOPHONOLOGICAL INNOVATION. , 2010, , 215-267.		14
305	Exploiting Bacterial Whole-Genome Sequencing Data for Evaluation of Diagnostic Assays: Campylobacter Species Identification as a Case Study. Journal of Clinical Microbiology, 2016, 54, 2882-2890.	1.8	14
306	Heterogeneity of the PorB Protein in Serotype 22 <i>Neisseria meningitidis</i> . Journal of Clinical Microbiology, 1998, 36, 3680-3682.	1.8	14

#	Article	IF	CITATIONS
307	Epidemic meningococcal disease in sub-Saharan Africa—towards a sustainable solution?. Lancet Infectious Diseases, The, 2003, 3, 68-70.	4.6	13
308	The Influence of IS1301 in the Capsule Biosynthesis Locus on Meningococcal Carriage and Disease. PLoS ONE, 2010, 5, e9413.	1.1	13
309	Genetic Distribution of Noncapsular Meningococcal Group B Vaccine Antigens in Neisseria lactamica. Vaccine Journal, 2013, 20, 1360-1369.	3.2	13
310	The global meningitis genome partnership. Journal of Infection, 2020, 81, 510-520.	1.7	13
311	A world without bacterial meningitis: how genomic epidemiology can inform vaccination strategy. F1000Research, 2018, 7, 401.	0.8	13
312	Structural analysis of the variation in the major outer membrane proteins of <i>Neisseria meningitidis</i> and related species. Biochemical Society Transactions, 1993, 21, 304-306.	1.6	12
313	Dam inactivation in Neisseria meningitidis: prevalence among diverse hyperinvasive lineages. BMC Microbiology, 2004, 4, 34.	1.3	12
314	Metabolic competition as a driver of bacterial population structure. Future Microbiology, 2016, 11, 1339-1357.	1.0	12
315	Genomic Analysis of Serogroup YNeisseria meningitidisIsolates Reveals Extensive Similarities Between Carriage-Associated and Disease-Associated Organisms. Journal of Infectious Diseases, 2016, 213, 1777-1785.	1.9	12
316	Development of a PCR algorithm to detect and characterize Neisseria meningitidis carriage isolates in the African meningitis belt. PLoS ONE, 2018, 13, e0206453.	1.1	12
317	Risk factors for acquisition of meningococcal carriage in the African meningitis belt. Tropical Medicine and International Health, 2019, 24, 392-400.	1.0	12
318	The Genus Neisseria. , 2014, , 881-900.		12
319	Sugars, antibiotics, microbes and men $\hat{a} \in $. Trends in Genetics, 1987, 3, 62-64.	2.9	11
320	The Population Biology of Neisseria meningitidis: Implications for Meningococcal Disease, Epidemiology and Control. , 2006, , 17-35.		11
321	Putting leprosy on the map. Nature Genetics, 2009, 41, 1264-1266.	9.4	11
322	Can we, should we, eradicate the meningococcus?. Vaccine, 2012, 30, B52-B56.	1.7	11
323	Editorial Commentary: Fifteen Years of Protection by Meningococcal C Conjugate Vaccines: Lessons From Disease Surveillance. Clinical Infectious Diseases, 2014, 59, 1222-1224.	2.9	11
324	â€~Be on the TEAM' Study (Teenagers Against Meningitis): protocol for a controlled clinical trial evaluating the impact of 4CMenB or MenB-fHbp vaccination on the pharyngeal carriage of meningococci in adolescents. BMJ Open, 2020, 10, e037358.	0.8	11

#	Article	IF	CITATIONS
325	Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage. MBio, 2020, 11, .	1.8	11
326	 <i>Neisseria meningitidis</i> Subtype Nomenclature . Vaccine Journal, 1999, 6, 771-772.	2.6	11
327	A comprehensive resource for Bordetella genomic epidemiology and biodiversity studies. Nature Communications, 2022, 13, .	5.8	11
328	The genetic structure of Neisseria meningitidis populations in Cuba before and after the introduction of a serogroup BC vaccine. Infection, Genetics and Evolution, 2010, 10, 546-554.	1.0	10
329	Allomorphy, autonomous morphology and phonological conditioning in the history of the Dacoâ€Romance present and subjunctive. Transactions of the Philological Society, 2011, 109, 59-91.	0.4	10
330	FetA Antibodies Induced by an Outer Membrane Vesicle Vaccine Derived from a Serogroup B Meningococcal Isolate with Constitutive FetA Expression. PLoS ONE, 2015, 10, e0140345.	1.1	10
331	The Applied Development of a Tiered Multilocus Sequence Typing (MLST) Scheme for Dichelobacter nodosus. Frontiers in Microbiology, 2018, 9, 551.	1.5	10
332	Where Does Campylobacter Come From? A Molecular Odyssey. Advances in Experimental Medicine and Biology, 2010, 659, 47-56.	0.8	10
333	A genomic view of experimental intraspecies and interspecies transformation of a rifampicin-resistance allele into Neisseria meningitidis. Microbial Genomics, 2018, 4, .	1.0	10
334	The Impact of Molecular Techniques on the Study of Meningococcal Disease. , 1998, 15, 265-292.		9
335	Estimating the Relative Roles of Recombination and Point Mutation in the Generation of Single Locus Variants in Campylobacter jejuni and Campylobacter coli. Journal of Molecular Evolution, 2012, 74, 273-280.	0.8	9
336	An OMV Vaccine Derived from a Capsular Group B Meningococcus with Constitutive FetA Expression: Preclinical Evaluation of Immunogenicity and Toxicity. PLoS ONE, 2015, 10, e0134353.	1.1	9
337	Genomic Analyses of >3,100 Nasopharyngeal Pneumococci Revealed Significant Differences Between Pneumococci Recovered in Four Different Geographical Regions. Frontiers in Microbiology, 2019, 10, 317.	1.5	9
338	The Neisseria gonorrhoeae Accessory Genome and Its Association with the Core Genome and Antimicrobial Resistance. Microbiology Spectrum, 2022, 10, .	1.2	9
339	Expression of meningococcal epitopes in LamB of Escherichia coli and the stimulation of serosubtype-specific antibody responses. Molecular Microbiology, 1993, 10, 203-213.	1.2	8
340	Pathogenomics: An updated European Research Agenda. Infection, Genetics and Evolution, 2008, 8, 386-393.	1.0	8
341	SYNTACTIC AND MORPHOSYNTACTIC TYPOLOGY AND CHANGE. , 2010, , 382-471.		8
342	Two suppletive adjectives in Megleno-Romanian. Revue Romane, 2014, 49, 32-52.	0.1	8

#	Article	IF	CITATIONS
343	Preventing secondary cases of invasive meningococcal capsular group B (MenB) disease using a recently-licensed, multi-component, protein-based vaccine (Bexsero®). Journal of Infection, 2014, 69, 470-480.	1.7	8
344	B Part of It School Leaver protocol: an observational repeat cross-sectional study to assess the impact of a meningococcal serogroup B (4CMenB) vaccine programme on carriage of <i>Neisseria meningitidis</i> . BMJ Open, 2019, 9, e027233.	0.8	8
345	Reconstruction of Dispersal Patterns of Hypervirulent Meningococcal Strains of Serogroup C:cc11 by Phylogenomic Time Trees. Journal of Clinical Microbiology, 2019, 58, .	1.8	8
346	Narrative review of methods and findings of recent studies on the carriage of meningococci and other <i>Neisseria</i> species in the African Meningitis Belt. Tropical Medicine and International Health, 2019, 24, 143-154.	1.0	8
347	A proposed core genome scheme for analyses of the Salmonella genus. Genomics, 2020, 112, 371-378.	1.3	8
348	A Mathematical Modeling Approach to Uncover Factors Influencing the Spread of Campylobacter in a Flock of Broiler-Breeder Chickens. Frontiers in Microbiology, 2020, 11, 576646.	1.5	8
349	Population Biology of Campylobacter jejuni and Related Organisms. , 0, , 27-40.		8
350	Establishment of the European meningococcal strain collection genome library (EMSC-GL) for the 2011 to 2012 epidemiological year. Eurosurveillance, 2018, 23, .	3.9	8
351	Structural variation and immune recognition of the P1.2 subtype meningococcal antigen. Proteins: Structure, Function and Bioinformatics, 2005, 62, 947-955.	1.5	7
352	The European networking for combating meningococcal disease. FEMS Microbiology Reviews, 2007, 31, 1-2.	3.9	7
353	cgMLST characterisation of invasive Neisseria meningitidis serogroup C and W strains associated with increasing disease incidence in the Republic of Ireland. PLoS ONE, 2019, 14, e0216771.	1.1	7
354	Relationships among streptococci from the mitis group, misidentified as Streptococcus pneumoniae. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1865-1878.	1.3	7
355	Evolution of Sequence Type 4821 Clonal Complex Hyperinvasive and Quinolone-Resistant Meningococci. Emerging Infectious Diseases, 2021, 27, 1110-1122.	2.0	7
356	A recombinant commensal bacteria elicits heterologous antigen-specific immune responses during pharyngeal carriage. Science Translational Medicine, 2021, 13, .	5.8	7
357	Lexical nonsense and morphological sense: On the real importance of 'folk etymology' and related phenomena for historical linguists. Linguistik Aktuell, 2008, , 307-328.	0.5	7
358	Typing complex meningococcal vaccines to understand diversity and population structure of key vaccine antigens. Wellcome Open Research, 2018, 3, 151.	0.9	7
359	Detection of proton-linked sugar transport proteins in Enterobacteriaceae. Biochemical Society Transactions, 1989, 17, 441-444.	1.6	6
360	Use of streptococcal protein G in obtaining crystals of an antibody Fab fragment in complex with a meningococcal antigen. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 314-316.	2.5	6

#	Article	IF	CITATIONS
361	Mechanisms of Attachment and Invasion. , 2006, , 257-272.		6
362	Editorial Commentary: The Endgame for Serogroup A Meningococcal Disease in Africa?. Clinical Infectious Diseases, 2013, 56, 364-366.	2.9	6
363	Neisseria lactamica Y92–1009 complete genome sequence. Standards in Genomic Sciences, 2017, 12, 41.	1.5	6
364	Investigation of correlates of protection against pharyngeal carriage of Neisseria meningitidis genogroups W and Y in the African meningitis belt. PLoS ONE, 2017, 12, e0182575.	1.1	6
365	New thoughts on an old puzzle. Revue Romane, 2018, 53, 217-260.	0.1	6
366	Characterization of meningococcal carriage isolates from Greece by whole genome sequencing: Implications for 4CMenB vaccine implementation. PLoS ONE, 2018, 13, e0209919.	1.1	6
367	Invasive meningococcal disease in Shanghai, China from 1950 to 2016: implications for serogroup B vaccine implementation. Scientific Reports, 2018, 8, 12334.	1.6	6
368	Distribution of class 1 integrons in historic and contemporary collections of human pathogenic Escherichia coli. PLoS ONE, 2020, 15, e0233315.	1.1	6
369	Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Research, 2019, 4, 99.	0.9	6
370	Overview: Epidemiology, Surveillance, and Population Biology. , 2001, 67, 121-130.		5
371	Carriage and transmission of Neisseria meningitidis. , 2016, , 15-23.		5
372	The Morphome. Annual Review of Linguistics, 2021, 7, 89-108.	1.2	5
373	B Part of It School Leaver Study: A Repeat Cross-Sectional Study to Assess the Impact of Increasing Coverage With Meningococcal B (4CMenB) Vaccine on Carriage of <i>Neisseria meningitidis</i> . Journal of Infectious Diseases, 2022, 225, 637-649.	1.9	5
374	What sort of thing is a derivational affix? Diachronic evidence from Romanian and Spanish suffixes. Morphology, 2001, , 25-52.	0.3	5
375	Typing complex meningococcal vaccines to understand diversity and population structure of key vaccine antigens. Wellcome Open Research, 2018, 3, 151.	0.9	5
376	Human B Cell Responses to Dominant and Subdominant Antigens Induced by a Meningococcal Outer Membrane Vesicle Vaccine in a Phase I Trial. MSphere, 2022, 7, e0067421.	1.3	5
377	Meningococcal genomics: two steps forward, one step back Nature Medicine, 2000, 6, 1215-1216.	15.2	4
378	Clonally Evolving Pathogenic Bacteria. Grand Challenges in Biology and Biotechnology, 2018, , 307-325.	2.4	4

#	Article	IF	CITATIONS
379	The Impact of Nucleotide Sequence Analysis on Meningococcal Vaccine Development and Assessment. Frontiers in Immunology, 2019, 9, 3151.	2.2	4
380	Genomic epidemiology of group B streptococci spanning 10 years in an Irish maternity hospital, 2008–2017. Journal of Infection, 2021, 83, 37-45.	1.7	4
381	Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Faculty Reviews, 2021, 10, 65.	1.7	4
382	UKMenCar4: A cross-sectional survey of asymptomatic meningococcal carriage amongst UK adolescents at a period of low invasive meningococcal disease incidence. Wellcome Open Research, 2019, 4, 118.	0.9	4
383	La ridistribuzione paradigmatica degli « aumenti» verbali nelle lingue romanze. , 2005, , 431-440.		4
384	ROMANCE LINGUISTICS AND HISTORICAL LINGUISTICS: REFLECTIONS ON SYNCHRONY AND DIACHRONY. , 2010, , 1-49.		4
385	Establishing Contact: Slavonic Influence on Romanian Morphology?. Journal of Language Contact, 2021, 14, 24-52.	0.1	4
386	A restatement of the natural science evidence base regarding the source, spread and control of <i>Campylobacter</i> species causing human disease. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	4
387	W135 Meningococcal Disease in Africa1. Emerging Infectious Diseases, 2003, 9, 1503-1504.	2.0	3
388	Historical Aspects. , 2006, , 1-13.		3
389	Role of Complement in Defense Against Meningococcal Infection. , 2006, , 273-293.		3
390	Genetics, Structure and Function of Lipopolysaccharide. , 2006, , 163-179.		3
391	Conjugate Vaccines. , 2006, , 343-369.		3
392	PRAGMATIC AND DISCOURSE CHANGES. , 2010, , 472-531.		3
393	Italoâ€Romance Metaphony and the Tuscan Diphthongs. Transactions of the Philological Society, 2016, 114, 198-232.	0.4	3
394	Genomic surveillance and meningococcal group B vaccine coverage estimates after introduction of the vaccine into the national immunisation programme in the UK. Lancet, The, 2017, 389, S85.	6.3	3
395	The Romanian alternating gender in diachrony and synchrony. Folia Linguistica, 2016, 37, 111-144.	0.1	3
396	Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Research, 2019, 4, 99.	0.9	3

#	Article	IF	Citations
397	Viral vectors expressing group B meningococcal outer membrane proteins induce strong antibody responses but fail to induce functional bactericidal activity. Journal of Infection, 2022, 84, 658-667.	1.7	3
398	Major Outer Membrane Proteins of Meningococci. , 2006, , 181-215.		2
399	Public Health Management. , 2006, , 519-531.		2
400	Methods for Typing of Meningococci. , 2006, , 37-52.		2
401	Phase Variation and Adaptive Strategies of N. meningitidis: Insights into the Biology of a Commensal and Pathogen. , 2006, , 99-118.		2
402	Multi-Locus Sequence Typing and the Gene-by-Gene Approach to Bacterial Classification and Analysis of Population Variation. Methods in Microbiology, 2014, 41, 201-219.	0.4	2
403	Impact of a Meningococcal Protein-based Serogroup B Vaccine on Serogroup W Invasive Disease in Children. Clinical Infectious Diseases, 2020, 73, e1669-e1672.	2.9	2
404	Complete genome and methylome analysis of Neisseria meningitidis associated with increased serogroup Y disease. Scientific Reports, 2020, 10, 3644.	1.6	2
405	Population genetics of a transformable bacterium: The influence of horizontal genetic exchange on the biology of Neisseria meningitidis. , 0, .		2
406	LATIN AND THE STRUCTURE OF WRITTEN ROMANCE. , 2010, , 606-659.		2
407	CHANGE AND CONTINUITY IN FORM–FUNCTION RELATIONSHIPS. , 2010, , 268-317.		2
408	UKMenCar4: A cross-sectional survey of asymptomatic meningococcal carriage amongst UK adolescents at a period of low invasive meningococcal disease incidence. Wellcome Open Research, 2019, 4, 118.	0.9	2
409	Application of a Neisseria meningitidis antigen microarray to identify candidate vaccine proteins from a human Phase I clinical trial. Vaccine, 2022, 40, 3835-3842.	1.7	2
410	Course of Disease and Clinical Management. , 2006, , 481-517.		1
411	Cellular Immune Responses in Meningococcal Disease. , 2006, , 295-320.		1
412	Genome Mining and Reverse Vaccinology. , 2006, , 391-402.		1
413	Genome Sequencing and Interrogation of Genome Databases: A Guide to Neisseria meningitidis Genomics. Methods in Molecular Biology, 2019, 1969, 51-82.	0.4	1
414	Factor H binding protein (fHbp)-mediated differential complement resistance of a serogroup C Neisseria meningitidis isolate from cerebrospinal fluid of a patient with invasive meningococcal disease. Access Microbiology, 2021, 3, 000255.	0.2	1

Martin C J Maiden

#	Article	IF	CITATIONS
415	The Role of Paradigms in the Phonetic Detail of Sound Change. Current Issues in Linguistic Theory, 1993, , 283.	0.1	1
416	SLANG AND JARGONS. , 2010, , 660-681.		1
417	Characterization of Bacterial Isolates with Molecular Techniques: Multilocus Sequence Typing. , 0, , 183-197.		1
418	Wolfgang U. Dressler, Hans C. Luschützky, Oskar E. Pfeiffer & John R. Rennison (eds.), Contemporary morphology. (Trends in Linguistics, Studies and Monographs, 49.) Berlin: Mouton De Gruyter. 1990. Pp. vi + 317 Journal of Linguistics, 1992, 28, 526-529.	0.5	0
419	ROMANIAN STUDIES: LANGUAGE. The Year's Work in Modern Language Studies, 1996, 58, 623-630.	0.0	0
420	ROMANIAN STUDIES: LANGUAGE. The Year's Work in Modern Language Studies, 1997, 59, 593-601.	0.0	0
421	ROMANIAN STUDIES: LANGUAGE. The Year's Work in Modern Language Studies, 1999, 61, 527-540.	0.0	0
422	Reply. Parasitology Today, 2000, 16, 266.	3.1	0
423	Iron Metabolism in Neisseria meningitidis. , 2006, , 217-234.		0
424	Genetics, Structure and Function of Pili. , 2006, , 235-254.		0
425	Outer Membrane Vesicle-based Meningococcal Vaccines. , 2006, , 371-390.		0
426	Vaccination for the Control of Meningococcal Disease: the Use of Meningococcal Vaccines from the Public Health Perspective. , 2006, , 403-423.		0
427	Neisseria meningitidis Genome Sequencing Projects. , 2006, , 77-97.		0
428	Meningococcal Transformation and DNA Repair. , 2006, , 119-143.		0
429	LEXICAL STABILITY. , 2010, , 564-584.		0
430	LEXICAL CHANGE. , 2010, , 585-605.		0
431	WORD FORMATION. , 2010, , 532-563.		0
432	P1.06â€In silico multilocus sequence typing of <i>chlamydia trachomatis</i> plasmids shows clustering of isolates according to the disease related biovars. , 2017, , .		0

#	Article	IF	CITATIONS
433	<i>Notes</i> ., 2010, , 682-745.		0
434	<i>Introduction</i> ., 2010, , xxvii-xxii.		0
435	<i>References and bibliographical abbreviations</i> ., 2010, , 746-841.		0
436	The Molecular Biology of Sugar Transport Proteins. , 1991, , 369-397.		0
437	The Impact of Horizontal Genetic Exchange on Bacterial Population Structure: Insights from the Genera Neisseria and Campylobacter. , 0, , 15-30.		0
438	Population Dynamics of Bacterial Pathogens. , 0, , 35-53.		0
439	Authors' response: Meningococcal vaccine antigen diversity in global databases. Eurosurveillance, 2016, 21, .	3.9	0
440	Mobile antimicrobial resistance in Neisseria gonorrhoeae. Access Microbiology, 2022, 4, .	0.2	0