Monica Bianchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Complexity of Neural Network Classifiers: A Comparison Between Shallow and Deep Architectures. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 1553-1565.	11.3	307
2	Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks, 1995, 6, 749-756.	4.2	180
3	Modelling Taxi Drivers' Behaviour for the Next Destination Prediction. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 2980-2989.	8.0	58
4	Molecular generative Graph Neural Networks for Drug Discovery. Neurocomputing, 2021, 450, 242-252.	5.9	57
5	Image generation by GAN and style transfer for agar plate image segmentation. Computer Methods and Programs in Biomedicine, 2020, 184, 105268.	4.7	53
6	Learning in multilayered networks used as autoassociators. IEEE Transactions on Neural Networks, 1995, 6, 512-515.	4.2	51
7	On the problem of local minima in recurrent neural networks. IEEE Transactions on Neural Networks, 1994, 5, 167-177.	4.2	44
8	Recursive neural networks for processing graphs with labelled edges: theory and applications. Neural Networks, 2005, 18, 1040-1050.	5.9	42
9	Optimal learning in artificial neural networks: A review of theoretical results. Neurocomputing, 1996, 13, 313-346.	5.9	39
10	Weak supervision for generating pixel–level annotations in scene text segmentation. Pattern Recognition Letters, 2020, 138, 1-7.	4.2	38
11	A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. Journal of Dermatological Science, 2021, 101, 115-122.	1.9	28
12	Recursive Processing of Cyclic Graphs. IEEE Transactions on Neural Networks, 2006, 17, 10-18.	4.2	26
13	Prediction of Traffic Movement for Autonomous Vehicles. Studies in Computational Intelligence, 2021, , 153-168.	0.9	26
14	Processing directed acyclic graphs with recursive neural networks. IEEE Transactions on Neural Networks, 2001, 12, 1464-1470.	4.2	24
15	Recursive neural networks learn to localize faces. Pattern Recognition Letters, 2005, 26, 1885-1895.	4.2	23
16	Multi-Modal Siamese Network for Diagnostically Similar Lesion Retrieval in Prostate MRI. IEEE Transactions on Medical Imaging, 2021, 40, 986-995.	8.9	22
17	A possible strategy to fight COVID-19: Interfering with spike glycoprotein trimerization. Biochemical and Biophysical Research Communications, 2020, 528, 35-38.	2.1	21
18	Automatic image classification for the urinoculture screening. Computers in Biology and Medicine, 2016. 70. 12-22.	7.0	20

Μονιςα Βιανςμινι

#	Article	IF	CITATIONS
19	On Inductive–Transductive Learning With Graph Neural Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 758-769.	13.9	18
20	Optimal algorithms for well-conditioned nonlinear systems of equations. IEEE Transactions on Computers, 2001, 50, 689-698.	3.4	17
21	A new integrated and interactive tool applicable to inborn errors of metabolism: Application to alkaptonuria. Computers in Biology and Medicine, 2018, 103, 1-7.	7.0	17
22	A Two-Stage GAN for High-Resolution Retinal Image Generation and Segmentation. Electronics (Switzerland), 2022, 11, 60.	3.1	17
23	An unobtrusive sleep monitoring system for the human sleep behaviour understanding. , 2016, , .		16
24	Editorial: RNA-Seq Analysis: Methods, Applications and Challenges. Frontiers in Genetics, 2020, 11, 220.	2.3	16
25	Learning long-term dependencies using layered graph neural networks. , 2010, , .		15
26	Terminal attractor algorithms: A critical analysis. Neurocomputing, 1997, 15, 3-13.	5.9	14
27	COCO_TS Dataset: Pixel–Level Annotations Based on Weak Supervision for Scene Text Segmentation. Lecture Notes in Computer Science, 2019, , 238-250.	1.3	14
28	A Deep Learning Approach to Bacterial Colony Segmentation. Lecture Notes in Computer Science, 2018, , 522-533.	1.3	13
29	Segmentation of Aorta 3D CT Images Based on 2D Convolutional Neural Networks. Electronics (Switzerland), 2021, 10, 2559.	3.1	12
30	Theoretical properties of recursive neural networks with linear neurons. IEEE Transactions on Neural Networks, 2001, 12, 953-967.	4.2	11
31	A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation. Mathematics, 2021, 9, 2896.	2.2	11
32	Towards learning trustworthily, automatically, and with guarantees on graphs: An overview. Neurocomputing, 2022, 493, 217-243.	5.9	11
33	Analysis of brain NMR images for age estimation with deep learning. Procedia Computer Science, 2019, 159, 981-989.	2.0	10
34	Inductive–Transductive Learning with Graph Neural Networks. Lecture Notes in Computer Science, 2018, , 201-212.	1.3	8
35	Glycine-induced formation and druggability score prediction of protein surface pockets. Journal of Bioinformatics and Computational Biology, 2019, 17, 1950026.	0.8	8
36	Fusion of Visual and Anamnestic Data for the Classification of Skin Lesions with Deep Learning. Lecture Notes in Computer Science, 2019, , 211-219.	1.3	8

Μονιζα Βιανςμινι

#	Article	IF	CITATIONS
37	Smart Gravimetric System for Enhanced Security of Accesses to Public Places Embedding a MobileNet Neural Network Classifier. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	8
38	An Eye Detection System Based on Neural Autoassociators. Lecture Notes in Computer Science, 2006, , 244-252.	1.3	7
39	Generating Bounding Box Supervision for Semantic Segmentation with Deep Learning. Lecture Notes in Computer Science, 2018, , 190-200.	1.3	7
40	AKUImg: A database of cartilage images of Alkaptonuria patients. Computers in Biology and Medicine, 2020, 122, 103863.	7.0	7
41	A Comparative Study of Inductive and Transductive Learning with Feedforward Neural Networks. Lecture Notes in Computer Science, 2016, , 283-293.	1.3	7
42	A Neural Network Approach to Similarity Learning. Lecture Notes in Computer Science, 2008, , 133-136.	1.3	7
43	GNNkeras: A Keras-based library for Graph Neural Networks and homogeneous and heterogeneous graph processing. SoftwareX, 2022, 18, 101061.	2.6	7
44	Deep Neural Networks for Structured Data. Studies in Computational Intelligence, 2018, , 29-51.	0.9	6
45	Object Recognition Using Multiresolution Trees. Lecture Notes in Computer Science, 2006, , 331-339.	1.3	6
46	Automatic Image Classification for the Urinoculture Screening. Smart Innovation, Systems and Technologies, 2015, , 31-42.	0.6	6
47	A Mixed Statistical and Machine Learning Approach for the Analysis of Multimodal Trail Making Test Data. Mathematics, 2021, 9, 3159.	2.2	6

Μονιςα Βιανςμινι

#	Article	IF	CITATIONS
55	Confidence Measures for Deep Learning in Domain Adaptation. Applied Sciences (Switzerland), 2019, 9, 2192.	2.5	3
56	Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey. , 2009, , 179-199.		3
57	ABLE: An Automated Bacterial Load Estimator for the Urinoculture Screening. , 2016, , .		3
58	Visual Sequential Search Test Analysis: An Algorithmic Approach. Mathematics, 2021, 9, 2952.	2.2	3
59	Extraction of High Level Visual Features for the Automatic Recognition of UTIs. Lecture Notes in Computer Science, 2017, , 249-259.	1.3	2
60	Structural bioinformatic survey of protein-small molecule interfaces delineates the role of glycine in surface pocket formation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, PP, 1-1.	3.0	2
61	Smart gravimetric system based on Deep Learning for enhanced safety of accesses to public places. , 2021, , .		2
62	Segmentation of Petri Plate Images for Automatic Reporting of Urine Culture Tests. Intelligent Systems Reference Library, 2022, , 127-151.	1.2	2
63	Graph-Based Integration of Histone Modification Profiles. Mathematics, 2022, 10, 1842.	2.2	2
64	Object Localization Using Input/Output Recursive Neural Networks. , 2006, , .		1
65	BackPropagation through Cyclic Structures. Lecture Notes in Computer Science, 2003, , 118-129.	1.3	1
66	Cyclostationary Neural Networks for Air Pollutant Concentration Prediction. Lecture Notes in Computer Science, 2008, , 101-112.	1.3	1
67	Robust Prostate Cancer Classification with Siamese Neural Networks. Lecture Notes in Computer Science, 2020, , 180-189.	1.3	1
68	Pattern recognition in graphical domains. Neurocomputing, 2009, 73, 177-178.	5.9	0
69	SUPERVISED NEURAL NETWORK LEARNING: FROM VECTORS TO GRAPHS. , 2013, , 275-305.		Ο
70	Structural Bioinformatics to Unveil Weaknesses of Coronavirus Spike Glycoprotein Stability. Methods in Pharmacology and Toxicology, 2021, , 203.	0.2	0
71	Structural bioinformatics survey on disease-inducing missense mutations. Journal of Bioinformatics and Computational Biology, 2021, 19, 2150008.	0.8	0
72	Advances in Neural Information Processing Paradigms. Studies in Computational Intelligence, 2009, , 1-7.	0.9	0

#	Article	IF	CITATIONS
73	Deep Learning Techniques for Dragonfly Action Recognition. , 2020, , .		0
74	A Transcriptional Study of Oncogenes and Tumor Suppressors Altered by Copy Number Variations in Ovarian Cancer. Smart Innovation, Systems and Technologies, 2020, , 159-169.	0.6	0