Anna Janowska-Wieczorek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322463/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical characterization of hematopoietic stem cells using multidirectional label-free light scatterings. Optics Express, 2016, 24, 28877.	1.7	18
2	Novel evidence that pituitary gonadotropins directly stimulate human leukemic cells-studies of myeloid cell lines and primary patient AML and CML cells. Oncotarget, 2016, 7, 3033-3046.	0.8	21
3	Further evidence that paroxysmal nocturnal haemoglobinuria is a disorder of defective cell membrane lipid rafts. Journal of Cellular and Molecular Medicine, 2015, 19, 2193-2201.	1.6	9
4	Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells. Artificial Cells, Nanomedicine and Biotechnology, 2015, 43, 318-327.	1.9	12
5	Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology, 2015, 71, 181-197.	0.3	278
6	Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. Molecular Therapy - Nucleic Acids, 2015, 4, e240.	2.3	31
7	Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid. Stem Cells International, 2014, 2014, 1-14.	1.2	23
8	Cell-matrix Interactions of Factor IX (FIX)-engineered human mesenchymal stromal cells encapsulated in RGD-alginate vs. Fibrinogen-alginate microcapsules. Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 102-109.	1.9	14
9	Sustained expression of coagulation factor IX by modified cord bloodâ€derived mesenchymal stromal cells. Journal of Gene Medicine, 2014, 16, 131-142.	1.4	9
10	Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells. Leukemia Research, 2014, 38, 1299-1308.	0.4	40
11	CXCR4 transfection of cord blood mesenchymal stromal cells with the use of cationic liposome enhances their migration toward stromal cell–derived factor-1. Cytotherapy, 2013, 15, 840-849.	0.3	38
12	Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis. BioMed Research International, 2013, 2013, 1-15.	0.9	240
13	Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α. Cancers, 2012, 4, 743-762.	1.7	5
14	Encapsulation of factor IX–engineered mesenchymal stem cells in fibrinogen–alginate microcapsules enhances their viability and transgene secretion. Journal of Tissue Engineering, 2012, 3, 204173141246201.	2.3	24
15	Cationic Liposome-Mediated <i>CXCR4</i> Gene Delivery into Hematopoietic Stem/Progenitor Cells: Implications for Clinical Transplantation and Gene Therapy. Stem Cells and Development, 2012, 21, 1587-1596.	1.1	25
16	Mesenchymal stromal cells derived from umbilical cord blood migrate in response to complement C1q. Cytotherapy, 2012, 14, 285-295.	0.3	58
17	The role of complement in the trafficking of hematopoietic stem/progenitor cells. Transfusion, 2012, 52, 2706-2716.	0.8	12
18	Studies in C4b-Deficient Mice Provide Further Evidence That Complement Cascade Orchestrates the Mobilization of Hematopoietic Stem/Progenitor Cells Blood, 2012, 120, 2316-2316.	0.6	0

#	Article	IF	CITATIONS
19	A Novel Perspective On Hematopoietic Stem/Progenitor Cell Homing - an Expanding Family of Bone Marrow Homing Factors That Can Support SDF-1-Mediated Homing or Even Replace SDF-1. Blood, 2012, 120, 1247-1247.	0.6	0
20	Microscope-based label-free microfluidic cytometry. Optics Express, 2011, 19, 387.	1.7	52
21	The Ins and Outs of Hematopoietic Stem Cells: Studies to Improve Transplantation Outcomes. Stem Cell Reviews and Reports, 2011, 7, 590-607.	5.6	59
22	Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: Further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Experimental Hematology, 2010, 38, 321-332.	0.2	64
23	MT1-MMP association with membrane lipid rafts facilitates G-CSFâ^'induced hematopoietic stem/progenitor cell mobilization. Experimental Hematology, 2010, 38, 823-835.	0.2	38
24	Valproic acid exerts differential effects on CXCR4 expression in leukemic cells. Leukemia Research, 2010, 34, 235-242.	0.4	19
25	Complement C1q enhances homingâ€related responses of hematopoietic stem/progenitor cells. Transfusion, 2010, 50, 2002-2010.	0.8	28
26	Elucidation of CXCR7-Mediated Signaling Events and Inhibition of CXCR4-Mediated Tumor Cell Transendothelial Migration by CXCR7 Ligands. Journal of Immunology, 2009, 183, 3204-3211.	0.4	263
27	Valproic Acid Increases CXCR4 Expression in Hematopoietic Stem/Progenitor Cells by Chromatin Remodeling. Stem Cells and Development, 2009, 18, 831-838.	1.1	54
28	Novel Mechanistic Insight Into Mobilization of Hematopoietic Stem/Progenitor Cells (HSPCs): Complement Cascade and Membrane Attack Complex Activated in Bone Marrow Sinusoids During Mobilization Release From Erythrocytes Sphingosine-1 Phosphate – An Underappreciated Chemoattractant Executing Egress of HSPCs Blood, 2009, 114, 31-31.	0.6	1
29	MT1-MMP Associates with Membrane Lipid Rafts and Is Required for G-CSF-Induced Hematopoietic Stem/Progenitor Cell Mobilization Blood, 2009, 114, 3536-3536.	0.6	Ο
30	Carboxypeptidase M Expressed by Human Bone Marrow Cells Cleaves the C-Terminal Lysine of Stromal Cell-Derived Factor-1 <i>1±</i> : Another Player in Hematopoietic Stem/Progenitor Cell Mobilization?. Stem Cells, 2008, 26, 1211-1220.	1.4	63
31	The Potent Deacetylase Inhibitor Trichostatin a (TSA) Increases CXCR4 Expression in Hematopoietic Stem/Progenitor Cells by Chromatin Remodelling. Blood, 2008, 112, 3487-3487.	0.6	2
32	The Role of C5a in the Mobilization of Hematopoietic Stem/Progenitor Cells. Blood, 2008, 112, 3472-3472.	0.6	0
33	MMP-14 Mediates Migration of Acute Myelogenous Leukemia Cells. Blood, 2008, 112, 2943-2943.	0.6	1
34	CXCR7 Is Expressed in B Acute Lymphoblastic Leukemia (ALL) Cells and Mediates Their Transendothelial Migration Blood, 2008, 112, 1916-1916.	0.6	1
35	Leukemia Inhibitory Factor: A Newly Identified Metastatic Factor in Rhabdomyosarcomas. Cancer Research, 2007, 67, 2131-2140.	0.4	94
36	A Novel Role of Complement in Mobilization: Immunodeficient Mice Are Poor Granulocyte-Colony Stimulating Factor Mobilizers Because They Lack Complement-Activating Immunoglobulins. Stem Cells, 2007, 25, 3093-3100.	1.4	58

#	Article	IF	CITATIONS
37	Complement Cascade (CC) Cleavage Fragments - C3a and C5a Anaphylatoxins - As New Unexpected Hypoxia-Related Stimulators of Erythropoiesis Blood, 2007, 110, 2220-2220.	0.6	1
38	G-CSF Induces Expression of Both Hepatocyte Growth Factor (HGF) and Its Receptor (c-Met) in Human Hematopoietic Stem/Progenitor Cells and Mature Myeloid Cells - Novel Evidence That during Mobilization the HGF-c-Met Axis Counterbalances G-CSF-Induced Attenuation of the SDF-1-CXCR4 Axis Blood, 2007, 110, 2203-2203.	0.6	0
39	C1q Complement Cascade Protein as a Novel Modulator of the SDF-1-CXCR4 Axis and Hematopoietic Stem/Progenitor Cell Trafficking Blood, 2007, 110, 1212-1212.	0.6	Ο
40	Migration of Bone Marrow and Cord Blood Mesenchymal Stem Cells In Vitro Is Regulated by Stromal-Derived Factor-1-CXCR4 and Hepatocyte Growth Factor-c-met Axes and Involves Matrix Metalloproteinases. Stem Cells, 2006, 24, 1254-1264.	1.4	586
41	Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion, 2006, 46, 1199-1209.	0.8	157
42	Mobilization Studies in Immunodeficient Mice Support a Role of Complement in Modulating the Trafficking of Hematopoietic Stem Cells (HSC) - A Pivotal Role of C3 Cleavage Fragments in Retention and C5 Fragments in Mobilization/Egress of HSC Blood, 2006, 108, 3375-3375.	0.6	0
43	Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood, 2005, 105, 40-48.	0.6	234
44	Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF-1-CXCR4 Axis. Stem Cells, 2005, 23, 879-894.	1.4	709
45	Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 2005, 113, 752-760.	2.3	668
46	LIF-LIF-R and SDF-1-CXCR4 Axes Regulate Overlapping and Complementary Steps of Metastasis of Rhabdomyosarcoma - Implication for Developing Better Antimetastatic Therapies Blood, 2005, 106, 2296-2296.	0.6	0
47	Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells, Molecules, and Diseases, 2004, 32, 52-57.	0.6	214
48	Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood, 2004, 103, 2071-2078.	0.6	167
49	A Potential New Application of Mobilization/Leukapheresis for Enrichment of Peripheral Blood in Circulating Non-Hematopoietic CXCR4+CD45â° Tissue-Committed Stem Cells (TCSC) for Organ/Tissue Regeneration Blood, 2004, 104, 151-151.	0.6	2
50	CXCR4 Is a PAX Family Transcription Factor Regulated Gene Blood, 2004, 104, 4205-4205.	0.6	2
51	Leukemia Inhibitory Factor: A Newly Identified Chemoattractant and Regulator of Metastasis of Rhabdomyosarcomas and Neuroblastomas to Bone Marrow Blood, 2004, 104, 1278-1278.	0.6	1
52	Expression of Functional CXCR4 by Muscle Satellite Cells and Secretion of SDF-1 by Muscle-Derived Fibroblasts is Associated with the Presence of Both Muscle Progenitors in Bone Marrow and Hematopoietic Stem/Progenitor Cells in Muscles. Stem Cells, 2003, 21, 363-371.	1.4	234
53	Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood, 2003, 101, 3784-3793.	0.6	217
54	Circulating CXCR4-positive stem/progenitor cells compete for SDF-1-positive niches in bone marrow, muscle and neural tissues: an alternative hypothesis to stem cell plasticity. Folia Histochemica Et Cytobiologica, 2003, 41, 13-21.	0.6	41

#	Article	IF	CITATIONS
55	Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Research, 2003, 63, 7926-35.	0.4	152
56	CXCR4–SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 2002, 100, 2597-2606.	0.6	289
57	Reovirus therapy of lymphoid malignancies. Blood, 2002, 100, 4146-4153.	0.6	100
58	Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Experimental Hematology, 2002, 30, 450-459.	0.2	287
59	Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Experimental Hematology, 2002, 30, 751-760.	0.2	63
60	The SDF-1-CXCR4 Axis Stimulates VEGF Secretion and Activates Integrins but does not Affect Proliferation and Survival in Lymphohematopoietic Cells. Stem Cells, 2001, 19, 453-466.	1.4	208
61	Numerous growth factors, cytokines, and chemokines are secreted by human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood, 2001, 97, 3075-3085.	0.6	457
62	Biological significance of MAPK, AKT and JAK-STAT protein activation by various erythropoietic factors in normal human early erythroid cells. British Journal of Haematology, 2001, 115, 195-204.	1.2	53
63	Autocrine/Paracrine Mechanisms in Human Hematopoiesis. Stem Cells, 2001, 19, 99-107.	1.4	99
64	Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood, 2001, 98, 3143-3149.	0.6	20
65	The limited infectability by R5 HIV of CD34+ cells from thymus, cord, and peripheral blood and bone marrow is explained by their ability to produce β-chemokines. Experimental Hematology, 2000, 28, 1334-1342.	0.2	19
66	Matrix Metalloproteinases and Their Tissue Inhibitors - Expression, Role and Regulation in Human Malignant Non-Hodgkin's Lymphomas. Leukemia and Lymphoma, 2000, 39, 485-493.	0.6	32
67	The Hematopoietic Microenvironment: Matrix Metalloproteinases in the Hematopoietic Microenvironment. Hematology, 2000, 4, 515-527.	0.7	12
68	Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells. British Journal of Haematology, 1999, 105, 402-411.	1.2	100
69	Matrix Metalloproteinases in the Hematopoietic Microenvironment. Hematology, 1999, 4, 515-527.	0.7	30
70	Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells. British Journal of Haematology, 1999, 105, 402-411.	1.2	4
71	Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion. Journal of Cancer Research and Clinical Oncology, 1998, 124, 245-252.	1.2	42
72	Unstimulated human acute myelogenous leukemia blasts secrete matrix metalloproteinases. Journal of Cancer Research and Clinical Oncology, 1997, 123, 100-106.	1.2	25

#	Article	IF	CITATIONS
73	Biology of the hemopoietic microenvironment. European Journal of Haematology, 1992, 49, 225-233.	1.1	167
74	Similarities in long-term cultures of blood and bone marrow from patients with acute myelogenous leukemia. International Journal of Cell Cloning, 1991, 9, 461-473.	1.6	4
75	Recombinant human erythropoietin for a Jehovah's witness with anemia of thermal injury. American Journal of Hematology, 1991, 37, 53-54.	2.0	30
76	Persistence of cytomegalovirus in human long-term bone marrow culture: Relationship to hemopoiesis. Journal of Medical Virology, 1991, 35, 76-84.	2.5	20
77	Multidrug resistance in haemopoietic cell lines, myelodysplastic syndromes and acute myeloblastic leukaemia. British Journal of Haematology, 1989, 72, 40-44.	1.2	148
78	Deficiency of mature B and T lymphocyte subsets in the blood of non-Hodgkin lymphoma patients. American Journal of Hematology, 1987, 26, 125-134.	2.0	3
79	Monoclonal antibody specific for granulocytic-lineage cells and reactive with human pluripotent and committed haematopoietic progenitor cells. British Journal of Haematology, 1984, 58, 159-168.	1.2	20
80	Decreased Antibody-Dependent Cellular Cytotoxicity in Preleukemic Syndromes. Acta Haematologica, 1983, 69, 132-135.	0.7	4
81	Monoclonal antibodies against human granulocytes and myeloid differentiation antigens. Human Immunology, 1982, 5, 309-323.	1.2	86
82	Decreased Antibodyâ€Dependent Cellular Cytotoxicity in Various Types of Leukaemia in Man. Scandinavian Journal of Haematology, 1981, 27, 181-185.	0.0	7
83	Familial Erythrocytosis. Scandinavian Journal of Haematology, 1979, 23, 217-222.	0.0	5