Daqiang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322342/publications.pdf

Version: 2024-02-01

38660 53109 7,685 111 50 85 citations h-index g-index papers 111 111 111 10225 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4- nitrophenol reduction. Applied Catalysis B: Environmental, 2016, 181, 371-378.	10.8	343
2	P Dopants Triggered New Basal Plane Active Sites and Enlarged Interlayer Spacing in MoS ₂ Nanosheets toward Electrocatalytic Hydrogen Evolution. ACS Energy Letters, 2017, 2, 745-752.	8.8	304
3	Dualâ€Functional N Dopants in Edges and Basal Plane of MoS ₂ Nanosheets Toward Efficient and Durable Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602086.	10.2	286
4	Metallic Ni ₃ N nanosheets with exposed active surface sites for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 17363-17369.	5.2	233
5	TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chemical Society Reviews, 2018, 47, 4332-4356.	18.7	232
6	Accelerated Hydrogen Evolution Reaction in CoS ₂ by Transition-Metal Doping. ACS Energy Letters, 2018, 3, 779-786.	8.8	231
7	Activating and Optimizing Activity of CoS ₂ for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies. ACS Energy Letters, 2017, 2, 1022-1028.	8.8	229
8	Engineering Lower Coordination Atoms onto NiO/Co ₃ O ₄ Heterointerfaces for Boosting Oxygen Evolution Reactions. ACS Catalysis, 2020, 10, 12376-12384.	5.5	223
9	Integrated Hierarchical Carbon Flake Arrays with Hollow Pâ€Doped CoSe ₂ Nanoclusters as an Advanced Bifunctional Catalyst for Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1804846.	7.8	192
10	A low crystallinity oxygen-vacancy-rich Co ₃ O ₄ cathode for high-performance flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 16094-16100.	5 . 2	182
11	Ferromagnetism in freestanding MoS2 nanosheets. Nanoscale Research Letters, 2013, 8, 129.	3.1	180
12	Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting. Nano-Micro Letters, 2019, 11, 2.	14.4	179
13	Room temperature ferromagnetism of pure ZnO nanoparticles. Journal of Applied Physics, 2009, 105, .	1.1	178
14	Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles. Nanoscale Research Letters, 2010, 5, 769-772.	3.1	171
15	Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale, 2014, 6, 2577.	2.8	167
16	Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures. Journal of Physical Chemistry C, 2010, 114, 18347-18351.	1.5	163
17	Selfâ€Powered Waterâ€Splitting Devices by Core–Shell NiFe@Nâ€Graphiteâ€Based Zn–Air Batteries. Advanc Functional Materials, 2018, 28, 1706928.	ed 7.8	155
18	Ferromagnetism in ultrathin VS2 nanosheets. Journal of Materials Chemistry C, 2013, 1, 5909.	2.7	149

#	Article	IF	Citations
19	N-doped WS ₂ nanosheets: a high-performance electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 11234-11238.	5.2	147
20	Dualâ€Native Vacancy Activated Basal Plane and Conductivity of MoSe ₂ with Highâ€Efficiency Hydrogen Evolution Reaction. Small, 2018, 14, e1704150.	5.2	114
21	Ferromagnetism in ZnO Nanoparticles Induced by Doping of a Nonmagnetic Element: Al. Journal of Physical Chemistry C, 2010, 114, 13477-13481.	1.5	111
22	Activation of the MoSe ₂ basal plane and Se-edge by B doping for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 510-515.	5 . 2	110
23	Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries. Nano-Micro Letters, 2020, 12, 68.	14.4	103
24	Engineered spin state in Ce doped LaCoO3 with enhanced electrocatalytic activity for rechargeable Zn-Air batteries. Nano Energy, 2020, 74, 104948.	8.2	99
25	Bifunctional porous Co-doped NiO nanoflowers electrocatalysts for rechargeable zinc-air batteries. Applied Catalysis B: Environmental, 2019, 250, 71-77.	10.8	98
26	Ferromagnetism in exfoliated tungsten disulfide nanosheets. Nanoscale Research Letters, 2013, 8, 430.	3.1	97
27	Realization of high Curie temperature ferromagnetism in atomically thin MoS ₂ and WS ₂ nanosheets with uniform and flower-like morphology. Nanoscale, 2015, 7, 650-658.	2.8	94
28	Modulation of Electronics of Oxide Perovskites by Sulfur Doping for Electrocatalysis in Rechargeable Zn–Air Batteries. Chemistry of Materials, 2020, 32, 3439-3446.	3.2	94
29	Electronic structure modulation of NiS ₂ by transition metal doping for accelerating the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 4971-4976.	5. 2	93
30	Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 259, 955-961.	2.6	92
31	Enhanced hydrogen evolution catalysis in MoS ₂ nanosheets by incorporation of a metal phase. Journal of Materials Chemistry A, 2015, 3, 24414-24421.	5.2	88
32	Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays. Nanoscale Research Letters, 2010, 5, 1289-1294.	3.1	87
33	Enhanced Catalytic Activities of Metal-Phase-Assisted 1T@2H-MoSe 2 Nanosheets for Hydrogen Evolution. Electrochimica Acta, 2016, 217, 181-186.	2.6	83
34	Phosphorus dual-site driven CoS ₂ @S, N co-doped porous carbon nanosheets for flexible quasi-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 26618-26630.	5.2	82
35	Interfacial Engineering of NiO/NiCo ₂ O ₄ Porous Nanofibers as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Diterfaces, 2020, 12, 21661-21669.	4.0	80
36	Atomically Thin B doped g-C3N4 Nanosheets: High-Temperature Ferromagnetism and calculated Half-Metallicity. Scientific Reports, 2016, 6, 35768.	1.6	74

#	Article	lF	CITATIONS
37	Ar ²⁺ Beam Irradiation-Induced Multivancancies in MoSe ₂ Nanosheet for Enhanced Electrochemical Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2167-2172.	8.8	7 3
38	Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Research, 2018, 11, 6051-6061.	5.8	72
39	<i>d</i> ferromagnetism in undoped sphalerite ZnS nanoparticles. Applied Physics Letters, 2011, 99, .	1.5	71
40	Enhancing the catalytic activity of flowerike Pt nanocrystals using polydopamine functionalized graphene supports for methanol electrooxidation. Electrochimica Acta, 2014, 142, 18-24.	2.6	70
41	Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media. Electrochimica Acta, 2019, 296, 701-708.	2.6	70
42	Room Temperature Ferromagnetism in Vacuum-Annealed CoO Nanospheres. Journal of Physical Chemistry C, 2010, 114, 21989-21993.	1.5	66
43	Tunable ferromagnetic ordering in MoS ₂ nanosheets with fluorine adsorption. Nanoscale, 2015, 7, 4211-4216.	2.8	65
44	High temperature ferromagnetism in Cu-doped MoS ₂ nanosheets. Journal Physics D: Applied Physics, 2016, 49, 165003.	1.3	65
45	Ferromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline. Nanoscale Research Letters, 2014, 9, 586.	3.1	63
46	Energy-level engineered hollow N-doped NiS1.03 for Zn–Air batteries. Energy Storage Materials, 2020, 25, 202-209.	9.5	62
47	Copper dopants improved the hydrogen evolution activity of earth-abundant cobalt pyrite catalysts by activating the electrocatalytically inert sulfur sites. Journal of Materials Chemistry A, 2017, 5, 17601-17608.	5.2	61
48	Room-temperature ferromagnetism in Er-doped ZnO thin films. Scripta Materialia, 2009, 60, 289-292.	2.6	58
49	Synthesis and magnetic properties of Zr doped ZnO Nanoparticles. Nanoscale Research Letters, 2011, 6, 587.	3.1	57
50	Durable oxygen evolution reaction of one dimensional spinel CoFe ₂ O ₄ nanofibers fabricated by electrospinning. RSC Advances, 2018, 8, 5338-5343.	1.7	54
51	Cu and Co nanoparticle-Co-decorated N-doped graphene nanosheets: a high efficiency bifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 12851-12858.	5.2	50
52	N ⁺ -ion irradiation engineering towards the efficient oxygen evolution reaction on NiO nanosheet arrays. Journal of Materials Chemistry A, 2019, 7, 4729-4733.	5.2	48
53	Defect-Mediated Magnetism in Pure CaO Nanopowders. Journal of Physical Chemistry C, 2010, 114, 11703-11707.	1.5	45
54	Re doping induced 2H-1T phase transformation and ferromagnetism in MoS2 nanosheets. Applied Physics Letters, 2018, 113, .	1.5	45

#	Article	IF	CITATIONS
55	Bifunctional Electrocatalytic Activity of Nitrogen-Doped NiO Nanosheets for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30865-30871.	4.0	41
56	S-doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. Journal of Power Sources, 2021, 491, 229584.	4.0	40
57	Magnetic properties of Er-doped ZnO films prepared by reactive magnetron sputtering. Applied Physics A: Materials Science and Processing, 2010, 100, 79-82.	1.1	37
58	Co and CeO ₂ co-decorated N-doping carbon nanofibers for rechargeable Zn–air batteries. Nanotechnology, 2019, 30, 395401.	1.3	37
59	Ferromagnetism Induced by Oxygen Vacancies in Zinc Peroxide Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 16405-16410.	1.5	35
60	Room temperature ferromagnetism of Cu doped ZnO nanowire arrays. Journal of Applied Physics, 2009, 105, .	1.1	34
61	A series of unexpected ferromagnetic behaviors based on the surface-vacancy state: an insight into NiO nanoparticles with a core–shell structure. RSC Advances, 2014, 4, 46133-46140.	1.7	34
62	Optimized Conductivity and Spin States in N-Doped LaCoO ₃ for Oxygen Electrocatalysis. ACS Applied Materials & Distribution (2011), 13, 2447-2454.	4.0	34
63	Ferromagnetism in sphalerite and wurtzite CdS nanostructures. Nanoscale Research Letters, 2013, 8, 17.	3.1	33
64	Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting. Journal of Materials Chemistry A, 2020, 8, 10831-10838.	5.2	31
65	Activation of defective nickel molybdate nanowires for enhanced alkaline electrochemical hydrogen evolution. Nanoscale, 2018, 10, 16539-16546.	2.8	29
66	Surface-Electronic-Structure Reconstruction of Perovskite via Double-Cation Gradient Etching for Superior Water Oxidation. Nano Letters, 2021, 21, 8166-8174.	4.5	29
67	Atomic-level coupled spinel@perovskite dual-phase oxides toward enhanced performance in Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 1506-1513.	5.2	28
68	Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range. Nanoscale Research Letters, 2013, 8, 404.	3.1	27
69	Zigzag-edge related ferromagnetism in MoSe ₂ nanoflakes. Physical Chemistry Chemical Physics, 2015, 17, 32505-32510.	1.3	26
70	High-valent Zirconium-doping modified Co3O4 weave-like nanoarray boosts oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 886, 161172.	2.8	26
71	P dopants induced ferromagnetism in g-C3N4 nanosheets: Experiments and calculations. Applied Physics Letters, 2017, 110, .	1.5	25
72	Cation substitution of B-site in LaCoO3 for bifunctional oxygen electrocatalytic activities. Journal of Alloys and Compounds, 2021, 878, 160433.	2.8	25

#	Article	IF	Citations
73	Special atmosphere annealed Co3O4 porous nanoclusters with oxygen defects and high proportion of Co2+ for oxygen evolution reaction. Journal of Alloys and Compounds, 2019, 806, 163-169.	2.8	24
74	Interface mediated ferromagnetism in bulk CuO/Cu2O composites. Applied Physics Letters, 2012, 101, .	1.5	23
75	Porous tin disulfide nanosheets with room temperature ferromagnetic nature. CrystEngComm, 2014, 16, 7876.	1.3	23
76	Phase-transfer induced room temperature ferromagnetic behavior in 1T@2H-MoSe2 nanosheets. Scientific Reports, 2017, 7, 45307.	1.6	23
77	Multi-stability modulating of alkaline-earth metal doped LaCoO3 for rechargeable Zn-air batteries. Energy Storage Materials, 2021, 42, 470-476.	9.5	22
78	Manifestation of high-temperature ferromagnetism in fluorinated graphitic carbon nitride nanosheets. Journal of Materials Chemistry C, 2015, 3, 12230-12235.	2.7	21
79	Adjustable ferromagnetic behavior in iron-doped two-dimensional MoS ₂ multilayer nanosheets. Applied Physics Express, 2017, 10, 093002.	1.1	21
80	Fluorination activates the basal plane HER activity of ReS ₂ : a combined experimental and theoretical study. Journal of Materials Chemistry A, 2021, 9, 14451-14458.	5.2	21
81	Significant Change of Metal Cations in Geometric Sites by Magneticâ€Field Annealing FeCo ₂ O ₄ for Enhanced Oxygen Catalytic Activity. Small, 2022, 18, e2104248.	5.2	21
82	Preparation and magnetic properties of Nd5Fe95â^'xBx nanowire arrays. Materials Letters, 2008, 62, 3070-3072.	1.3	20
83	Bifunctional catalysts of CoNi nanoparticle-embedded nitrogen-doped carbon nanotubes for rechargeable Zn–air batteries. Nanotechnology, 2019, 30, 435701.	1.3	20
84	Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling. AIP Advances, 2011, 1, .	0.6	19
85	High efficiency electrocatalyst of LaCr0.5Fe0.5O3 nanoparticles on oxygen-evolution reaction. Scientific Reports, 2020, 10, 13395.	1.6	17
86	Abnormal room temperature ferromagnetism in CuO–ZnO heterostructures: interface related or not?. Chemical Communications, 2015, 51, 1151-1153.	2.2	16
87	Electrode-controlled confinement of conductive filaments in a nanocolumn embedded symmetric–asymmetric RRAM structure. Journal of Materials Chemistry C, 2020, 8, 1577-1582.	2.7	16
88	Observation of room temperature ferromagnetism in pure La2O3 nanoparticles. Applied Physics A: Materials Science and Processing, 2014, 116, 1293-1298.	1.1	15
89	Ferromagnetism of two-dimensional transition metal chalcogenides: both theoretical and experimental investigations. Nanoscale, 2021, 13, 12772-12787.	2.8	12
90	Hydrogen-etched CoS ₂ to produce a Co ₉ S ₈ @CoS ₂ heterostructure electrocatalyst for highly efficient oxygen evolution reaction. RSC Advances, 2021, 11, 30448-30454.	1.7	12

#	Article	IF	Citations
91	The influences of electrodeposited temperature on the morphology and magnetic properties of Fe/Fe–dimethylsulfoxide nanocables. Electrochimica Acta, 2008, 53, 5464-5468.	2.6	11
92	Room temperature ferromagnetism in pure Y 2 O 3 nanoparticles. Europhysics Letters, 2012, 97, 17005.	0.7	11
93	Anion vacancy-mediated ferromagnetism in atomic-thick Ni3N nanosheets. Applied Physics Letters, 2017, 111, .	1.5	11
94	Defect-related high temperature ferromagnetism in mechanically milled hexagonal boron nitride nanoplates. Applied Surface Science, 2019, 487, 825-832.	3.1	10
95	Giant magnetoelectric coupling observed at high frequency in NiFe ₂ O ₄ –BaTiO ₃ particulate composite. RSC Advances, 2020, 10, 27242-27248.	1.7	10
96	Cu vacancies modulated the room temperature ferromagnetism in Cu ₂ O/Cu nanoparticle composites. CrystEngComm, 2015, 17, 2118-2122.	1.3	9
97	Structural distortion induced ferromagnetism in two-dimensional metal-free graphitic-C ₃ N ₄ nanosheets. RSC Advances, 2019, 9, 21391-21395.	1.7	9
98	Realization of "single-atom ferromagnetism―in graphene by Cu–N4 moieties anchoring. Applied Physics Letters, 2020, 116, .	1.5	9
99	Room temperature ferromagnetism in Zn0.99La0.01O and pure ZnO nanoparticles. Materials Chemistry and Physics, 2014, 145, 510-514.	2.0	7
100	Argon ion irradiation induced phase transition and room temperature ferromagnetism in the CuO thin film. Journal Physics D: Applied Physics, 2016, 49, 055003.	1.3	7
101	Robust ferromagnetism in Cr-doped ReS ₂ nanosheets demonstrated by experiments and density functional theory calculations. Nanotechnology, 2020, 31, 175702.	1.3	7
102	A Co ₃ O ₄ /MnCO ₃ heterojunction on three-dimensional nickel foam for an enhanced oxygen evolution reaction. CrystEngComm, 2020, 22, 3984-3990.	1.3	7
103	Enhanced thermal stability of lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. Journal of Materials Science, 2020, 55, 16890-16899.	1.7	6
104	Fe-based species anchored on N-doped carbon nanotubes as a bifunctional electrocatalyst for acidic/neutral/alkaline Zn–air batteries. Nanotechnology, 2020, 31, 265402.	1.3	4
105	Fe13+-ion irradiated WS2 with multi-vacancies and Fe dopants for hydrogen evolution reaction. FlatChem, 2021, 27, 100247.	2.8	3
106	Effect of annealing temperature on the magnetic properties of Zn _{0.97} Al _{0.03} O nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2454-2459.	0.8	2
107	Cr cation-anchored carbon nanosheets: synthesis, paramagnetism and ferromagnetism. Nanotechnology, 2021, 32, 335706.	1.3	2
108	Adjusting the electronic structure of WS2 nanosheets by iron doping to promote hydrogen evolution reaction. FlatChem, 2021, 29, 100278.	2.8	2

#	Article	IF	CITATIONS
109	Tunable ferromagnetic ordering in phosphorus adsorbed ReS2 nanosheets. Nanotechnology, 2021, 32, 075701.	1.3	2
110	Coexistence of ferromagnetism and spin glass behavior in antiferromagnetic Y2BaCuO5. Physica C: Superconductivity and Its Applications, 2013, 490, 32-36.	0.6	1
111	High efficiency electrocatalyst of LaNiO3@LaCoO3 nanoparticles on oxygen-evolution reaction. FlatChem, 2022, , 100371.	2.8	0